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Abstract
Introduction  Breast cancer, a formidable global health challenge for women, necessitates innovative therapeutic 
strategies with enhanced efficacy and minimal side effects. Aripiprazole (ARI), a widely used schizophrenia 
medication, exhibits promising potential in the treatment of breast cancer. As cancer therapy evolves towards a 
combination approach, multimodal nano-based delivery systems, such as ARI-loaded niosomes (NIOs) combined with 
Chitosan-Au nanoparticles for chemo-photothermal therapy, show promise over traditional chemotherapy alone by 
enhancing targeted efficacy and minimizing side effects.

Methods  In this study, a niosomal formulation was designed, incorporating ARI and chitosan-coated AuNPs (i.e. 
NIOs/AuNPs-CS/ARI), to study the synergistic effect of photothermal/chemotherapy in breast cancer cells.

Results  The nanosystems were characterized using UV-Vis spectroscopy and Fourier-transform infrared spectroscopy 
(FT-IR), confirming the successful synthesis steps. The hydrodynamic diameter of NIOs/AuNPs-CS was determined 
to be 44.62 nm with a zeta potential of -0.836. Also, Transmission Electron Microscopy (TEM) and Field-Emission 
Scanning Electron Microscopical (FE-SEM) analysis were performed to assess the size and morphology of NPs. The 
loading efficiency of ARI in NIOs and NIOs/AuNPs–CS was 75% and 88%, respectively. Furthermore, the release rate of 
the drug from NIOs/AuNPs–CS is higher than blank NIOs at two pH values (5.8 and 7.4). The cellular uptake of AuNPs-
CS-encapsulated NIOs was considerably higher than that of blank NIOs. The Annexin V/PI staining assay showed that 
the apoptosis/necrosis rate was high in NIOs/AuNPs-CS/ARI (46%) and NIOs/ARI (36%) in 48 h. The results of MTT 
assessments demonstrated higher cytotoxicity by ARI-loaded NPs. The viability of MCF-7 cells treated with NIOs/
AuNPs-CS/ARI was reduced from 60% and 50% to 40% and 20%, respectively, after 24 and 48 h upon laser irradiation.

Conclusion  The results of this experiment demonstrated the remarkable effectiveness of NIOs/AuNPs-CS/ARI in 
cancer treatment, owing to their unique properties, including the PTT capability and pH sensitivity.

Keywords  Niosomes, Aripiprazole, Photothermal therapy, Combination therapy, Breast cancer, Chitosan, Gold 
nanoparticles
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Introduction
Breast cancer is the most common and life-threatening 
cancer in females worldwide [1]. Despite having distinct 
subtypes, breast cancer cells differ significantly from 
healthy cells. For example, some receptors are highly 
expressed in cancerous cells that control fundamental 
cellular functions such as proliferation, adhesion, dif-
ferentiation, and survival [2, 3]. Additionally, their dis-
tinct metabolic mechanisms result in an altered tumor 
microenvironment (e.g. hypoxia and acidic extracellular 
pH) [4]. Although surgery and chemotherapy hold great 
promise in breast cancer therapy, the efficacy is subopti-
mal due to side effects -including severe nausea, hair loss, 
and fatigue [5]- as well as the development of resistance 
by cancer cells. Cancer cells can acquire genetic muta-
tions that modify the drug target, reducing drug binding, 
and efficacy. These mutations can alter the target struc-
ture, making it difficult for the drug to exert its intended 
effect [6]. The new treatment modalities have attracted 
much attention and offer attractive and more effective 
alternatives to combat this disease. Several fields, includ-
ing biomedicine, have witnessed an increase in nano-
technology research, applying nanoparticles (NPs) for 
cancer treatment [7]. Nanoparticle-based drug delivery 
has emerged as a promising cancer therapy approach [8]. 
This technology offers distinct advantages, such as tar-
geted delivery, improved drug solubility [5], the ability to 
overcome drug resistance, and controlled release [9].

Among various NP-based delivery systems, niosomes 
(NIOs) are considered suitable platforms due to their 
biocompatibility, low toxicity, and facile synthesis [10]. 
They are vesicular nanocarriers and suitable for carrying 
both hydrophilic and hydrophobic drugs, being regarded 
as viable alternatives to liposomal [11, 12].

Moreover, a hybrid system of combination therapy, 
using photothermal therapy (PTT) and chemotherapy, 
is reported to be more effective due to the synergistic or 
complementary impacts of such an emerging combined 
treatment strategy [13].

PTT offers a localized, minimally invasive cancer 
therapy option, that uses a photothermal agent to con-
vert light into heat to raise the temperature of the tumor 
site [14]. Gold nanoparticles (AuNPs) are one of the best 
photothermal agents that have photoacoustic and photo-
thermal properties at specific wavelengths [15], leading 
to properties that make them attractive for hyperther-
mal therapy of cancer cells and for medical imaging [16, 
17]. Near-infrared (NIR) laser is commonly employed in 
AuNPs-induced PTT as the optimal biological optical 
window, where the absorption by hemoglobin, melanin, 
and water is reduced, allowing deeper light penetration 
into fluids and tissues [18]. However, AuNPs must be 
stabilized for clinical applications to prevent aggregation 

in the biological milieu [19]. One approach for stabiliz-
ing AuNPs is surface modification, and encapsulation 
within chitosan (CS)-based NPs [20]. CS is a natural 
polysaccharide with abundant amine functional groups 
that offers unprecedented potential for the fabrication 
of multifunctional targeted/smart delivery systems [21]. 
In addition, it has been indicated that CS-stabilized 
AuNPs demonstrate improved biocompatibility and sta-
bility [20]. Due to the associated serious side effects, and 
resistance development with the customary chemother-
apeutics, there has been a great interest in finding new 
alternatives, such as drug repurposing [22]. This strategy 
is gaining popularity among scientists as it offers a more 
viable and effective alternative to traditional drug discov-
ery approaches [23]. In this regard, aripiprazole (ARI), a 
high-affinity partial agonist of the dopamine D2 receptor 
that is commonly used as an antipsychotic drug to treat 
schizophrenia [24], has attracted much attention. How-
ever, more recent studies have shown that ARI also has 
antiproliferative effects on different cancer cells, such 
as colon, gastric, and breast cancer cells in increased 
apoptosis [23]. ARI demonstrates a sensitization effect, 
especially in drug-resistant cancer cells and enhances 
radiosensitizing effects in various cancer cells [25, 26].

In this study, we aim to develop a multimodal nanosys-
tem for the combination therapy of breast cancer. To this 
end, a niosomal formulation was proposed that encapsu-
lates ARI as a chemotherapeutic agent, and AuNPs-CS 
for PTT therapy of breast cancer cells. This drug delivery 
system was engineered and characterized, utilizing physi-
cochemical properties, encapsulation efficiency, and drug 
release properties in different conditions. The bioimpacts 
of NPs on breast cancer cells were studied by evaluating 
the cell uptake, cytotoxicity, and apoptosis/necrosis regu-
lation. Further, the effectiveness of the chemo/PTT ther-
apy combination of the synthesized NIOs/AuNPs-CS/
ARI was investigated on MCF-7 cancer cells under laser 
irradiation.

Methods
Materials
Chloroauric acid (HAuCl4.  3H2O), chitosan (CS) 
(medium molecular weight), cholesterol, polysorbate 80 
(Tween 80), and surfactant sorbitan monostearate (Span 
60) were purchased from Sigma-Aldrich Corp (St. Louis, 
USA). Breast cancer cells (MCF-7) were purchased from 
the National Cell Bank of Iran, Pasteur Institute (Tehran, 
Iran). RPMI 1640 medium and FBS were prepared from 
Gibco, Invitrogen (Paisley, UK). The Annexin V-FITC kit 
for the detection of apoptosis/necrosis was provided by 
eBiosciences (MA, USA ). Cell culture flasks and plates 
were purchased from SPL Life Science (South Korea).
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Preparation of AuNPs-CS
The AuNPs-CS were synthesized according to our previ-
ously published method with slight modifications [27]. 
In this study, AuNPs-CS were prepared in lower con-
centrations of CS and HAuCl4 solutions as well as lower 
temperature to achieve the smaller size of NPs. In brief, 
50  mg of CS was dissolved in 10 mL acetic acid solu-
tion (1% v/v). Then 200 µL of HAuCl4. 3H2O (12.5 mM) 
was added dropwise to the CS solution under stirring 
conditions at 45  °C. After 3  h, the color of the solution 
was slowly changed from yellow to wine-red, which 
indicated the formation of AuNPs-CS. For purification, 
the obtained AuNPs-CS solution was centrifuged at 
12,000 rpm for 10 min.

Synthesis of NIOs/AuNPs-CS, ARI-loaded NIOs, and ARI-
loaded NIOs/AuNPs-CS
NIOs were synthesized using the thin-film hydration 
method [28]. Briefly, Span 60 (8 mg), Tween 80 (20 mg), 
cholesterol (4  mg), and ARI (4  mg) were dissolved in 
methanol (3 mL) and chloroform (3 mL). Then this solu-
tion was put in a rotary evaporator at 120 rpm and 60 °C 
for 1  h and the solvent was removed. The proniosomes 
were hydrated with 5 mL of PBS containing 500 µL of 
AuNPs-CS and the mixture was then subjected to probe 
sonication for 5 min in a pulsatile manner (50 s sonica-
tion with 10  s pause) with 30% amplitude to form ARI-
loaded NIOs/AuNPs-CS (Fig.  1). The NIOs/AuNPs-CS, 
and NIOs/ARI were prepared using the same strategy, 

excluding the addition of ARI and AuNPs-CS during the 
synthesis procedure, respectively. The final solution was 
centrifuged at 12,000 rpm for 10 min at room tempera-
ture to remove the unreacted reagents.

Characterization of NIOs and NIOs/AuNPs-CS
The dynamic light scattering (DLS) Zetasizer Nano ZS 
(Malvern Instruments Ltd., Malvern, UK) was used to 
determine the zeta potential and size distribution of 
NIOs and NIOs/AuNPs-CS. The morphology of NIO 
was also analyzed using transmission electron micros-
copy (TEM). The sample was dispersed on copper grids 
at 1  mg/mL concentration without staining. LEO 906E 
TEM (Carl Zeiss, Oberkochen, Germany) with an accel-
erating voltage of 80  kV was used to image the TEM 
micrographs. Additionally, the morphology and size 
of the NPs were also determined using field-emission 
scanning electron microscopy (FE-SEM, S4160, Hitachi, 
Japan). The samples were spread on aluminum sheets, 
dried at 60  °C for 10  min, and then the sample was 
applied on the SEM stage under vacuum at 25 kv. The 
chemical structure of the synthesized nanosystems was 
investigated through Fourier-transform infrared spec-
troscopy (FT-IR) to verify the presence of specific chemi-
cal bonds and functional groups on the NPs. The FT-IR 
spectra were acquired in the 4000 –400 cm− 1 range using 
KBr discs on an FT-IR Tensor 27 spectrometer (Bruker 
Optik GmbH, Ettlingen, Germany).

Fig. 1  Schematic representation of NIOs/AuNPs-CS/ARI synthesis. First, chitosan-coated AuNPs were prepared (a). NIOs were produced using solvent 
evaporation technique, loaded with AuNPs-CS and ARI to obtain final nanosystems, i.e. NIOs/AuNPs-CS/ARI (b)
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Drug loading and in vitro releases
UV-Vis spectroscopy was used to determine the entrap-
ment efficacy of ARI in the NIOs/AuNPs-CS. ARI-NIOs/
AuNPs-CS was placed into the dialysis bag (12,000 Da) 
immersed in 100 mL PBS (pH = 7.4) and stirred (4  °C, 
30 min). The concentration of encapsulated ARI was then 
measured using UV-Vis spectroscopy at 250 nm. The fol-
lowing formula was used to calculate the efficiency of 
drug encapsulation (DE).

DE% = initial drug concentration − unload drug concentration
initial drug concentration

× 100

The release of ARI from NIOs and NIOs/AuNPs-CS was 
evaluated at pH = 7.4 and 5.8. For this purpose, NPs were 
placed in the dialysis bag immersed in 100 mL PBS and 
agitated on a shaker (90  rpm and 37  °C). At predeter-
mined time intervals, 2 mL of PBS was withdrawn and 
replaced with an equal volume of fresh PBS. The amount 
of ARI released was measured at 250 nm and calculated 
using the following equation:

	 The amount of drug release (% ) =
CiVt +

∑n
i=1 (Ci−1Vs)
mt

× 100

Where Ci represents the concentration of the drug 
release at time t, Vt represents the volume of the envi-
ronment in which the drug is released, Vs represents the 
volume extracted from the release medium, and mt rep-
resents the mass of the loaded ARI. A variety of mathe-
matical models were used to determine the drug kinetics 
of ARI-NIOs/AuNPs-CS and NIOs/ARI at normal and 
acidic pH, including Zero-order, First order, Higuchi, 
Power law, Square root of mass, Hixson, Crowell, Three 
seconds’ root of mass, Weibull, and Reciprocal.

Cellular uptake
The cellular uptake of NIOs and NIOs/AuNPs-CS by 
MCF-7 cells was investigated. First, NIOs and NIOs/
AuNPs-CS were labeled by FITC, to this end, they were 
incubated with FITC (4  mg/mL methanol), overnight 
with continuous shaking at 4 °C. MCF-7 cells were seeded 
in six-well plates with a density of 5 × 105 cells/well. After 
24 h, the cells were treated with FITC-labeled NPs (48 µM). 
An untreated group was included as a control, where cells 
were treated with PBS. After 4  h, the cells were washed 
with PBS, trypsinized, and centrifuged at 160 g for 5 min. 
Finally, NIOs and NIOs/AuNPs-CS uptake by MCF-7 cells 
was determined using FACS Calibur flow cytometry (BD 
FACSCalibur, BD bioscience, CA, USA ).

Cytotoxicity assessment
Cytotoxicity of ARI, NIOs, NIOs/ARI, NIOs/AuNPs-CS, 
and NIOs/AuNPs-CS/ARI on MCF-7 cells was evaluated 

by MTT assay. Cells at a density of 5 × 103/well were cul-
tured in a 96-well plate. Following overnight culture, the 
cells were treated with 12, 24, 48, and 96 µM concentra-
tions of ARI, NIOs, NIOs/ARI, NIOs/AuNPs-CS, and 
NIOs/AuNPs-CS/ARI. After 24 and 48  h of treatment, 
the media was removed, and MTT solution was added 
and then incubated for a further 4  h. Subsequently, the 
MTT solution was replaced by DMSO, and an ELISA 
reader (Elx808, BioTek Instruments, Winooski, VT, USA) 
at a wavelength of 570  nm was used to determine the 
absorbance.

Apoptosis/necrosis assessment
An Annexin V/PI apoptosis detection kit was utilized 
to examine the impact of ARI, NIOs, ARI/NIOs, NIOs/
AuNPs-CS, and NIOs/AuNPs-CS/ARI with concentra-
tion of 48 μm on the apoptosis/necrosis of MCF-7 cells. 
To this end, 5 × 105 MCF-7 cells per well were seeded into 
6-well plates. After 24 h, cells were treated with samples 
and then incubated for 48 h. Subsequently, the cells were 
washed, trypsinized, and centrifuged at 160 g for 5 min-
utes. After washing with PBS, cells were resuspended in 
binding buffer (100 µL), and then 10 µL of FITC-Annexin 
V and PI were added for staining. Samples were incu-
bated at 4  °C for 10  min, then the cells were analyzed 
using FACS flow cytometry (BD FACSCalibur, BD biosci-
ence, CA, USA).

The effect of hyperthermia on cytotoxicity
To determine the effects of ARI in combination with 
hyperthermia on cancer cells, MCF-7 cells were seeded 
in a 96-well plate with a density of 5 × 103 per well. After 
24  h, cells were treated with ARI, NIOs, NIOs/ARI, 
NIOs/AuNPs-CS, and NIOs/AuNPs-CS/ARI at a con-
centration of 48 µM. After 4 h of treatment, the cells were 
exposed to the laser radiation (525 nm) (Mustang@ 2000, 
Russia) for 1 min. The cells were further cultured for 24, 
and 48 h, and then the MTT assay was performed.

Statistical analysis
In this study, each experiment was repeated at least three 
times, and the results were expressed as the mean ± stan-
dard deviation (SD). ANOVA, a multiple comparison test 
involving three or more groups, was used to analyze the 
data and statistical significance was determined with a 
p-value less than 0.05. Prism, version 9.3, was used for all 
statistical analysis.

Results and discussion
NIOs possess distinctive properties that make them 
favorable drug delivery systems (DDSs). These include 
their ability to simultaneously load both hydrophilic and 
hydrophobic drugs, ease of synthesis, low toxicity, and 
biocompatibility [29]. In this study, our objective was to 
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engineer a suitable niosomal nanosystem for the com-
bined chemo/photothermal therapy of breast cancer. 
Chitosan-coated AuNPs, as pH-responsive PTT agents 
were synthesized. Subsequently, ARI and AuNPs-CS 
were loaded in the hydrophobic domain and hydrophilic 
core of NIOs, respectively (Fig.  1). Then their physico-
chemical characteristics and biological impacts were 
studied in MCF-7 breast cancer cells.

NIOs/AuNPs-CS characterization
The particle size is a crucial factor in the development 
of nanotechnology-based DDSs. Recent advancements 
indicate that NPs with a size of about 50–100  nm have 
significant potential for cancer therapy [30]. Owing to a 
high rate of angiogenesis, solid tumors display abnormal 
leaky vasculature with an irregular shape and a lack of a 
smooth muscle layer. These characteristics can be har-
nessed to increase the NPs penetration from the blood 
circulation to the tumor tissues through enhanced per-
meability and retention (EPR) [31]. These characteristics 
make them highly advantageous for biomedical applica-
tions. The size of the prepared NIOs and NIOs/AuNPs-
CS were 54.77, and 44.62 nm, respectively (Fig. 2a, c), as 
evaluated by dynamic light scattering. Previous research 
has demonstrated the high sensitivity of NIOs to aggre-
gation. Following sonication, NIOs can exhibit signifi-
cant aggregation [32, 33]. In our study, NIOs are slightly 
larger than NIOs/AuNPs-CS, which could be due to the 
aggregation of NIOs. In our previous study, it was also 
observed that the size of bare NIOs were larger than 
NIOs/AuNPs and NIOs/AuNPs-Polyamidoamine [34]. 
TEM and SEM analysis were performed for size and 

morphology assessment, which showed the prepared 
NIOs and NIOs/AuNPs-CS have a spherical shape with a 
size of around 50 nm for NIOs (Fig. 3a and c) and almost 
38  nm for NIOs/AuNPs-CS (Fig.  3b). Morphological 
characterization of NIOs acquired by TEM and SEM 
analysis indicated a smaller size than the DLS measure-
ment since the zeta sizer indicates the hydrated diameter 
form of NPs, which is consistently larger than NPs’ accu-
rate diameters [35]. Further, the zeta potential of NIOs/
AuNPs-CS (-0.836) was found to be more neutral com-
pared to NIOs (-14.8) (Fig.  2b, d), which can be attrib-
uted to the presence of CS. The positively charged amino 
groups of CS influence the zeta potential of the fabricated 
NPs [36]. NPs with a zeta potential of -10 to + 10 mV and 
a size of less than 100  nm promote their function and 
enhance their qualities for DDSs [37, 38]. Therefore, the 
NIOs/AuNPs-CS have suitable size and zeta potential for 
biomedical applications.

FT-IR spectra were used to determine the chemi-
cal structure of NIOs, and NIOs/AuNPs-CS (Fig.  4a). 
The peaks identified were at 1738  cm− 1 attributed to a 
5-membered ring [39]. In the spectrum of NIOs/AuNPs-
CS, the bands at 2900  cm− 1 and 3400  cm− 1 are related 
to the stretching vibrations of CH2 and hydroxyl groups, 
respectively [40]. The peaks at 1382 and 1646  cm− 1 are 
for C-N stretching and C = O amide stretching of CS, 
while 3417  cm− 1, and 1106  cm− 1 could be related to 
the asymmetric stretch of C–O–C groups of CS and 
NIOs [41, 42]. The peak at 1580–1650  cm− 1 is related 
to AuNPs-CS for the amines group of CS [43], which 
does not exist in bare NIOs. The characteristic peaks of 
1457 cm− 1 which indicate alkanes and the aromatic ring 

Fig. 2  The size (a, c) and zeta potential (b, d) distribution of NIOs and NIOs/AuNPs-CS respectively. Zeta potential of (b) NIOs, (d) NIOs/AuNPs-CS
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stretch functional group were found in Tween 80, cho-
lesterol, and Span 60 [44]. The lipophilic region is chains 
made up of alkanes [45], which are similar in both NIOs 
and NIOs/AuNPs-CS indicating that AuNPs-CS did not 
interact in lipophilic regions. As shown in Fig. 4b, a clear 
and single peak at 525  nm was observed in the UV-Vis 
spectrum indicating that AuNPs-CS was successfully 
synthesized and can be used in PTT.

Drug entrapment efficiency drug release
As amphiphilic NPs, NIOs could entrap the hydropho-
bic and hydrophilic drugs simultaneously [46]. As previ-
ously demonstrated, NIOs exhibit a significant capability 
for carrying hydrophobic drugs such as paclitaxel, with 
remarkable %EE values of 98.5% [47]. In this study, NIOs/

AuNPs-CS nanosystems were used for delivering ARI as 
a hydrophobic drug. The loading efficiency of ARI in sim-
ple NIOs and NIOs/AuNPs–CS was 75 and 84%, respec-
tively, indicating excellent loading efficiency. The high 
drug loading in nanostructures can be attributed to span 
60, characterized by its low hydrophobic moiety values, 
promoting the formation of robust and stable NIOs with 
exceptional entrapment efficiency [48]. Similarly, choles-
terol is known to positively influence the permeability, 
rigidity, leakage, and entrapment efficiency of NIOs [49]. 
The synthesis of AuNPs using chitosan would improve its 
surface properties for binding of biomolecules which can 
increase drug loading efficiency [50].

Developing a smart nanocarrier with a high encapsula-
tion efficiency, and regulated release property is a critical 

Fig. 4  (a) The FT-IR spectra of NIOs and NIOs/AuNPs-CS. (b) The UV-Vis spectrum of NIOs/AuNPs-CS

 

Fig. 3  The SEM images (scale bar = 2.54 μm) of (a) NIOs, (b) NIOs/AuNPs-CS, and (c) the TEM image of NIOs
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challenge in cancer therapy [51]. On the other hand, the 
acidic tumor microenvironment (TME), primarily due to 
anaerobic glucose metabolism, presents an opportunity 
for developing intelligent, pH-driven, controlled-release 
DDSs [51]. Previous research has demonstrated that the 
hydrophobicity of tween 80 may favor the retention of 
hydrophobic drugs, such as ARI on the vesicle’s surface 
rather than encapsulation within the system [48]. The 
decoration of AuNPs-CS on the surface of NIOs influ-
ences their pH sensitivity. This is due to the protonation 
of amino groups of CS under acidic conditions, thereby 
increasing their solubility and drug release [51]. More-
over, in previous research, the NIO formulation allowed 
for a more gradual release of ARI in physiological pH due 
to its lipophilicity, demonstrating the NIO’s effectiveness 
in controlled drug delivery applications [52]. The cumula-
tive in vitro release profile of ARI from formulated NIOs 
and NIOs/AuNPs-CS composite at pH = 7.4 and 5.8 at 
37  °C is shown in Fig.  5. The rates of ARI released from 
NIOs/AuNPs-CS are higher than NIOs in both pH condi-
tions. These findings demonstrated that NIOs/AuNPs-CS 

possess unique pH-responsive drug release properties, 
making them a suitable smart DDS. Various kinetic mod-
els were employed to fit the release of ARI from NIOs/
ARI and NIOs/AuNPs-CS/ARI as presented in Tables  1 
and 2. The analysis indicated that at the pHs of 7.4 and 
5.8, the release curves best fit with the Power law, Weibull, 
and Reciprocal powered time kinetic models  (as shown 
in Tables 1 and 2)  . The results of this study are consis-
tent with our prior work, which demonstrated the release 
of silibinin from NIOs with similar behavior [53]. The 
Weibull and Power law release kinetics indicated the drug 
release profile is largely based on diffusion while swelling 
and erusion mechanisms might be somewhat involved 
since the biopolymer is subjected to degradation [54]. 
The Reciprocal powered time model also indicated a con-
trolled release behavior [55]. Based on the release kinetics 
data, Power Law model seems to be a better fit for the drug 
release, in which the release exponent is smaller than 0.5, 
indicating the drug release is primarily governed by Fick-
ian diffusion through the polymer matrix at both pHs. 
However, we speculate that upon the initial release of the 

Table 1  The kinetics models of ARI release from NIOs/ARI
Kinetics model Equation Coefficient of determination (R2)

pH = 5.8 pH = 7.4
Zero-order F = k0 t 0.8576 0.7367
First order ln(1 − F ) = −kf t 0.9322 0.7844

Higuchi F = kH

√
t 0.969 0.8811

Power lawa ln F = ln kP + P ln t 0.9903 0.9516
Square root of mass 1 −

√
1 − F = k1/2 t 0.8977 0.7609

Hixson-Crowell 1 − 3√1 − F = k1/3 t 0.9099 0.7688

Three seconds’ root of mass 1 − 3
√

(1 − F )2 = k2/3 t 0.8849 0.7529

Weibullb ln(− ln(1 − F )) = −β ln td + β ln t 0.9937 0.9618

Reciprocal powered timec (
1
F

− 1
)

= m
tb

0.9885 0.9701

apH = 5.8: kP=0.1645 and P = 0.2315; pH = 7.4: kP=0.0955 and P = 0.2708
bpH = 5.8: β = 0.2661 and td=615.2458; pH = 7.4: β = 0.2948 and td=2391.1066
cpH = 5.8: m = 4.9973 and b = 0.3046; pH = 7.4: m = 9.3633 and b = 0.3204

Fig. 5  The cumulative in vitro release of ARI from (a) NIOs and (b) NIOs/AuNPs-CS at pH = 7.4 and 5.8 at 37 °C, ∗, ∗∗ represented p < 0.05 and p < 0.01, 
respectively (n = 3)
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drugs, the polymer swelling and possible degradation pro-
cess might be involved in drug release. Furthermore, based 
on Weibull kinetics model (with a shape parameter, b < 1), 
the rate of drug release decreases over time, which further 
indicates that drug release profile is largely dependent 
upon the diffusion phenomenon.

Cellular uptake
Cellular uptake of NPs plays a key role in assessing the 
efficacy of DDSs. Particle size, shape, and surface charge 
can influence the mechanism of cellular uptake and the 
efficiency of the therapeutic agent [56]. Previous stud-
ies have demonstrated that the uptake of different NPs 
by nonphagocytic cells is highly correlated to the size of 
NPs [57]. Uptake reaches an optimum level at around 
50  nm, then declines for particles of higher sizes [58]. 
In addition, the shape of NPs directly influences cellular 
uptake, and spherical NPs show the highest uptake after 
rod-NPs [59]. Owing to the presence of phospholipids, 
the cell membrane has a slight negative charge, and cell 
uptake is driven by electrostatic attractions. Therefore, 

the positively charged NPs are taken up faster than nega-
tively charged NPs [59, 60]. Figure 6 presents the uptake 
of NIOs and NIOs/AuNPs-CS by MCF-7 cancer cells. It 
was shown that NIOs can be transported into the cells 
because of their small size and sphere shape. However, 
cell uptake of NIOs/AuNPs-CS was significantly higher 
due to the positive charge of NIOs/AuNPs-CS compared 
to NIOs and enhanced cell membrane interaction with 
the particles.

Cell cytotoxicity evaluation by MTT assay
The MCF-7 cells were treated with free ARI, NIOs, ARI/
NIOs, NIOs/AuNPs-CS, and NIOs/AuNPs-CS/ARI at 
concentrations of 12, 24, 48, and 96 µM for 24 and 48 h, 
and then the MTT assay was performed. As shown in 
Fig. 7, NIOs and NIOs/AuNP-CS formulations have neg-
ligible cytotoxicity against the MCF-7 cells. Such cyto-
compatibility is mainly attributed to the low cytotoxicity 
of the ester surfactants (span and tween) used to prepare 
NIOs, indicating the great potential of NIOs formula-
tions for drug delivery applications [61]. Previous studies 

Table 2  The kinetics models of ARI release from NIOs/AuNPs-CS/ARI
Kinetics model Equation Coefficient of determination (R2)

pH = 5.8 pH = 7.4
Zero-order F = k0 t 0.7917 0.7627
First order ln(1 − F ) = −kf t 0.832 0.7845

Higuchi F = kH

√
t 0.7211 0.892

Power lawa ln F = ln kP + P ln t 0.9866 0.922
Square root of mass 1 −

√
1 − F = k1/2 t 0.8123 0.7736

Hixson-Crowell 1 − 3√1 − F = k1/3 t 0.819 0.7773

Three seconds’ root of mass 1 − 3
√

(1 − F )2 = k2/3 t 0.8055 0.77

Weibullb ln(− ln(1 − F )) = −β ln td + β ln t 0.99 0.9217

Reciprocal powered timec (
1
F

− 1
)

= m
tb

0.9913 0.9211

apH = 5.8: kP=0.1809 and P = 0.3186; pH = 7.4: kP=0.1316 and P = 0.2623
bpH = 5.8: β = 0.3916 and td=58.5851; pH = 7.4: β = 0.2917 and td=798.3528
cpH = 5.8: m = 4.3540 and b = 0.4792; pH = 7.4: m = 6.4734 and b = 0.3237

Fig. 6  Cellular uptake (a) untreated group, (b) NIOs, and (c) NIOs/AuNPs-CS
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have shown that ARI inhibits the proliferation of MCF-7 
cells in a concentration-dependent manner [23]. How-
ever, some studies have indicated that free ARI exhibits 
relatively weaker effects in inhibiting cell proliferation 
when compared to its efficacy in combination with other 
agents, such as Cisplatin [26] and in some cancer cell 
lines, achieving the half-maximal inhibitory concentra-
tion (IC50) may require the use of very high concentra-
tions of ARI (> 100 µM) [62]. Our study has demonstrated 
that ARI-loaded NIOs exhibit higher cytotoxicity as com-
pared to free ARI, due to increased solubility and sub-
sequently enhanced intracellular levels in MCF-7 cells 
[63]. Moreover, targeted NPs can enter the target cells, 
through receptor-mediated endocytosis, increasing the 
concentration of drug molecules within the cell. During 
this process, P-gp does not recognize drug molecules and 
fails to pump out the free drug molecules from the cell 
[64]. Besides, in our latest studies, niosomal formulations 
were highly biocompatible, as there was no significant 
cytotoxicity on the HHF-2 and HEK-293 (normal cell 
lines) [35, 53]. NIOs/AuNPs-CS/ARI have more inhibi-
tory effects on MCF-7 compared to NIOs/ARI (50% VS 
53%, at the concentration of 48 µM after 48 h), which is 
not statistically significant (p > 0.05) between two groups. 
Since sample size and measurement variability can easily 
influence the statistical results, a nonsignificant outcome 
does not imply that the new therapy or treatment proto-
col is not clinically useful [65]. The reason for this slight 
increase may be due to the high uptake of NIOs/AuNPs-
CS/ARI by MCF-7 cells [66]. The IC50 of ARI loaded in 
NPs was about 48 µM after 48 h. This concentration was 
used for the subsequent experiments and combination 
therapy step.

Flow cytometry assay
Studies have demonstrated that ARI increases the apop-
tosis rate in the various cancer cells by regulating the 
expression of key proapoptotic genes, such as BCL10 and 
caspases 3, along with anti-apoptotic genes like BCL2L1, 

and c-myc [23]. In various studies, loading drugs into 
almost the same nanoplatforms has shown significantly 
higher apoptosis rates in cancer cells compared to 
administering free drugs. For instance, a formulation of 
doxorubicin and vincristine loaded into CS-coated NIOs 
demonstrated a notable increase in apoptosis in cancer 
cells compared to the effects of free drugs [67]. Our latest 
study reported that loading paclitaxel onto NIOs/AuNPs-
Polyamidoamine platform produced a higher apoptotic 
rate in cancer cells than free paclitaxel [34]. Our find-
ings reveaedl that ARI (48 µM) loaded in a composite 
nanosystem of NIOs/AuNPs-CS significantly increases 
the apoptosis and necrosis rate, specifically in the cells 
treated with NIOs/AuNPs-CS/ARI reaching %46 after 
48  h. This surpasses the corresponding rates observed 
with NIOs/ARI and free ARI, which are %36 and %26, 
respectively (Fig. 8). This observation may be attributed 
to enhanced cellular uptake facilitated by improved inter-
action with the cell membrane.

Combination therapy
The combined chemo/PTT therapeutic efficacy of 
drug-loaded NIOs and NIOs/AuNPs-CS on MCF-7 
cancer cells was investigated after 24 and 48 h. These 
findings have shown that NIOs did not have cytotox-
icity, while NIOs/AuNPs-CS have shown significant 
cytotoxicity. Previous studies have demonstrated that 
small gold nanospheres have negligible damage to the 
mitosis and DNA synthesis at normal growth tem-
perature, while this defect was exacerbated by mild 
hyperthermia conditions [68]. Laser irradiation itself 
has also been shown to have no cytotoxic effects on 
the untreated cells (control +), because PTT works by 
exerting local cytotoxic hyperthermia on the treated 
cancer cells through a photothermal contrast agent. 
In this approach, a photothermal contrast agent is 
used to deliver radiation energy to the tumor tissue 
[69]. Local hyperthermia mediated by AuNPs induced 
by a mild PTT can result in the apoptosis/necrosis of 

Fig. 7  The cytotoxicity of ARI, NIOs, NIOs/ARI, NIOs/AuNPs-CS, and NIOs/AuNPs-CS/ARI on the MCF-7 cells after (a) 24 h and (b) 48 h, p* < 0.05, (n = 4)
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cancer cells by denaturing proteins and enzymes, dis-
rupting metabolic signals, and swelling the endothe-
lium, among other effects [70]. Moreover, combination 
therapy decreases the IC50 in MCF-7 cells treated 
by NIOs/AuNPs-CS/ARI which IC50 has shown in 

24 h. In contrast, at the same concentration, IC50 was 
observed at 48  h without PTT. Notably, the cytotox-
icity of NIOs/AuNPs-CS/ARI with PTT was found to 
be substantial, resulting in a cell death rate of approxi-
mately 60% in 24 h and around 80% in 48 h (Fig. 9).

Fig. 8  Flow cytometry analysis of MCF-7 cells. (a–f) represents the cell population for the untreated control group and treated with NIOs, NIOs/AuNPs-CS, 
ARI, NIOs/ARI, and NIOs/AuNPs-CS/ARI after 48 h. (g) The viable, early apoptotic, late apoptotic, and necrotic cell population upon 48 h treatment. ∗, ∗∗ 
represented p < 0.05 and p < 0.01, respectively (n = 2)
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Conclusion
Transitioning from monotherapy to combination ther-
apy for cancer presents numerous advantages, including 
reduced side effects with efficient eradication of can-
cer cells. In this research, we successfully synthesized 
and characterized NIOs/AuNPs-CS/ARI for breast can-
cer treatment. Considering the amphiphilic proper-
ties of NIOs, we loaded ARI into the hydrophobic core 
while decorating the surface with AuNPs-CS. The use of 
AuNPs for PTT serves to convert light into heat, thereby 
enhancing the effect of ARI against breast cancer cells. 
Furthermore, incorporating AuNPs-CS into the fabri-
cation of DDS results in a positively charged surface for 
NIOs/AuNPs-CS, promoting uptake by cancer cells com-
pared to NIOs. This research underscores the potential of 
NIOs/AuNPs-CS/ARI, with their unique properties, as 
a promising strategy for targeting breast cancer. Future 
investigations, including in vivo studies or the use of dif-
ferent ligands, could provide essential insights needed to 
advance this approach toward clinical trials. This com-
bination therapy has the potential to integrate smoothly 
into existing breast cancer treatment protocols, improv-
ing patient survival by reducing side effects and address-
ing drug resistance.
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