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Abstract 

Background Aiming at the problem that traditional transfer methods are prone to lose data information in the over-
all domain-level transfer, and it is difficult to achieve the perfect match between source and target domains, thus 
reducing the accuracy of the soft sensor model.

Methods This paper proposes a soft sensor modeling method based on the transfer modeling framework of sub-
structure domain. Firstly, the Gaussian mixture model clustering algorithm is used to extract local information, cluster 
the source and target domains into multiple substructure domains, and adaptively weight the substructure domains 
according to the distances between the sub-source domains and sub-target domains. Secondly, the optimal sub-
space domain adaptation method integrating multiple metrics is used to obtain the optimal projection matrices Ws 
and Wt that are coupled with each other, and the data of source and target domains are projected to the correspond-
ing subspace to perform spatial alignment, so as to reduce the discrepancy between the sample data of different 
working conditions. Finally, based on the source and target domain data after substructure domain adaptation, 
the least squares support vector machine algorithm is used to establish the prediction model.

Results Taking Pichia pastoris fermentation to produce inulinase as an example, the simulation results verify 
that the root mean square error of the proposed soft sensor model in predicting Pichia pastoris concentration 
and inulinase concentration is reduced by 48.7% and 54.9%, respectively.

Conclusion The proposed soft sensor modeling method can accurately predict Pichia pastoris concentra-
tion and inulinase concentration online under different working conditions, and has higher prediction accuracy 
than the traditional soft sensor modeling method.

Keywords Substructure domain, Transfer learning, Soft sensor, Pichia pastoris

Background
As one of the most widely used exogenous protein 
expression systems [1, 2], Pichia pastoris (eukaryotic) 
expression system has achieved remarkable results in the 
fields of drug research and development, vaccine produc-
tion, and industrial enzymes due to its simplicity of oper-
ation, high efficiency of expression, ease of cultivation, 
and the ability to post-transcriptional modifications of 
exogenous protein [3–5]. However, the process of protein 
production by Pichia pastoris induced fermentation is a 
highly nonlinear and strongly coupled dynamic process 
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with time-variability, strong coupling and uncertainty 
[6]. Key biological variables (such as Pichia pastoris con-
centration and inulinase concentration) that can directly 
reflect fermentation quality during the fermentation pro-
cess cannot be measured online and in real time, and 
there is no accurate mechanism model available [7]. At 
present, it can only be estimated by offline and laboratory 
analysis, which not only causes the lag of information 
acquisition, and affects the operator’s correct judgment 
and decision on the real-time reaction state, but also lim-
its the implementation of optimal control strategy. There-
fore, it is urgent to find a method to achieve the optimal 
estimation and prediction of key biological variables in 
the fermentation process of Pichia pastoris.

Soft sensor method is an effective way to address the 
problem of online measurement of key biological vari-
ables in biological fermentation process. Sun et  al. [8] 
proposed a modeling method combining self-organ-
izing feature mapping and least squares support vec-
tor machine to predict the fermentation effect of CTC. 
Experiments showed that the method could obtain more 
accurate predictions of fermentation effects. Wang et al. 
[9] applied relevance vector machine to the soft sen-
sor modeling of penicillin fermentation process and 
achieved good results. Hua et  al. [10] proposed a soft 
sensor model of penicillin fermentation process based 
on random forest and improved harris hawk optimized 
long short-term memory network to determine key bio-
logical variables in the fermentation process. The simula-
tion results show that the established soft sensor model 
has high measurement accuracy and good measurement 
effect, and can meet the practical requirements of engi-
neering. Dave et  al. [11] used artificial neural networks 
and genetic algorithms to predict bioethanol produc-
tion. Yamada et al. [12] used Gaussian mixture model to 
divide the datasets, genetic algorithm to select explana-
tory variables, and ultimately constructed online nonlin-
ear adaptive soft sensor model for explanatory variables 
at each stage. The results show that the adaptive soft sen-
sor model can accurately predict the value of the target 
variable in each process state. Although the soft sensor 
models constructed above can realize the online pre-
diction of the key biological variables in the fermenta-
tion process, these modeling methods do not take into 
account the characteristics of multiple working condi-
tions of the fermentation process, i.e., due to the differ-
ent initial environmental parameters in the fermentation 
production process and the frequently switched parame-
ters in the production process, there are large discrepan-
cies between the fermentation data of different batches, 
and the data of fermentation process under different 
working conditions have drifted to a certain extent, 
and its distribution no longer obeys the assumption of 

independent and identical distribution, and it is difficult 
to collect labeled data for some special working condi-
tions or potential working conditions, and when the 
distribution of the working conditions to be measured 
differs greatly from the distribution of the modeled data, 
the performance of the originally established soft sensor 
model will be significantly reduced, and the generaliza-
tion capability will be limited or even the model will be 
invalidated, and the performance will be challenged 
considerably.

At present, although most soft sensor modeling algo-
rithms considering multiple working conditions are rela-
tively mature, they are still not rid of the assumption of 
independent and identical distribution in essence, and 
cannot break through the limitations of low prediction 
accuracy and poor generalization ability of the original 
model due to the discrepancy in data distribution of the 
working conditions to be measured under non-ideal con-
ditions. The soft sensor method of multiple working con-
dition process based on transfer learning solves the above 
problems. It relaxes the assumption that training data 
and test data need to follow independent and identical 
distribution, and quickly improves the accuracy of soft 
sensor model by transferring data information of known 
working conditions to the working condition to be meas-
ured with different data distribution and scarce labeled 
data, which is suitable for complex multiple working con-
ditions. Chai et al. [13] proposed a deep probability trans-
fer regression soft sensor framework, which reduced the 
discrepancy in data distribution between source domain 
and target domain and effectively reduced the impact of 
data loss on the performance of soft sensor models in 
industrial processes. Xie et  al. [14] proposed an online 
transfer learning technology based on transfer slow fea-
ture analysis and variational Bayesian inference to solve 
the problem of measuring the water content of crude oil 
emulsion in steam-assisted gravity drainage technology. 
Ren et al. [15] proposed a soft sensor model based on var-
iational mode decomposition, autoencoder and transfer 
learning to achieve high-precision regression prediction. 
Zhou et  al. [16] proposed a joint distributed adaptive 
regression soft sensor model based on online fuzzy sets, 
which converted continuous labels into fuzzy class labels 
through fuzzy sets. By adapting both marginal and con-
ditional distributions, the domain adaption of dam-
age quantification task was realized, which significantly 
improved the accuracy of damage quantification in real-
world environment. Zhu et  al. [17] proposed an offset 
compensation Gaussian process regression model for the 
quality inference of chemical processes with distributed 
outputs. The molecular weight distribution prediction 
in a polymerization process indicates its feasibility and 
superiority. Liu et al. [18] proposed a novel framework of 
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an adversarial transfer learning (ATL) based soft sensing 
method for the quality inferring of multigrade processes. 
Liu et al. [19] proposed a soft sensing method based on 
domain adaptation extreme learning machine (DAELM), 
and the prediction results of two multilevel chemical pro-
cesses showed the superiority of DAELM method. There-
fore, transfer learning can effectively solve the problem 
of model failure caused by the application of traditional 
soft sensor models to multiple operating conditions, and 
transfer learning can transfer knowledge from multiple 
known fermentation conditions to help accomplish the 
target condition learning task, which effectively allevi-
ates the problem of insufficient samples in small-sample 
fermentation process. The soft sensor model using the 
idea of transfer learning can solve the problem of multi-
ple working conditions in modeling to a certain extent, 
but the soft sensor modeling process of multiple working 
conditions using traditional transfer learning is to align 
the distribution of the entire modeling datasets through 
transfer learning, without considering the local struc-
ture presented by the fermentation process due to the 
characteristics of nonlinear, multi-stage and other char-
acteristics. During the transfer process, local informa-
tion is easily ignored, resulting in the loss of some data 
information during feature mapping and the inability to 
maintain the original data structure. The established soft 
sensor model suffers from underfitting, and there is still 
room for improvement in the accuracy of the soft sensor 
model.

Based on this, this paper proposes a soft sensor mod-
eling method based on the transfer modeling framework 
of substructure domain for multiple working conditions 
of the fermentation process of Pichia pastoris. Firstly, the 
source and target domain data are divided into substruc-
ture domains by the Gaussian mixture model (GMM) 
clustering algorithm, while the sub-source domains are 
weighted according to the distance between the sub-
source and sub-target domains. Secondly, the optimal 
subspace domain adaptation method combining mul-
tiple metric strategies (maximum variance, manifold 
regularization and distribution discrepancy minimiza-
tion) is used to obtain the optimal subspace projection of 
the sub-source domain and the sub-target domain, and 
the optimal projection is used to project the data of the 
sub-source domain and the sub-target domain into the 
manifold space to align the data of the two domains, so 
as to reduce the discrepancy between the data of differ-
ent working conditions. Finally, considering the nonlin-
ear and small-sample characteristics of Pichia pastoris 
fermentation process, the least squares support vector 
machine(LSSVM) is used as the basic modeling method, 
and the data after substructure domain transfer is used 
to train the prediction model. Taking the process of 

Pichia pastoris fermentation to generate inulinase as an 
example for validation, the simulation results show that 
the OSDA-LSSVM soft sensor model predicted the root-
mean-square errors of Pichia pastoris concentration 
and inulinase concentration with a reduction of 48.7% 
and 54.9%, respectively, compared with the traditional 
LSSVM model, and it can effectively improve the accu-
racy of the soft sensor model under multiple working 
conditions.

Methods
The soft sensor model established based on the idea of 
transfer learning effectively solves the problem of the 
performance degradation of the soft sensor model caused 
by the mismatch of data distribution under multiple 
working conditions. However, when the process data pre-
sents local structure due to the nonlinearity and multi-
stage characteristics, the transfer learning of the data 
as a whole means that the local information is ignored, 
and part of the data information will be lost during the 
feature mapping, so that the accuracy of the soft sensor 
model established on this basis will be affected as well. 
Therefore, it is necessary to improve the traditional trans-
fer learning method and construct a framework for align-
ing data distribution within the local data structure with 
the highest relevance and then building the soft sensor 
model. In summary, taking into account the characteris-
tics of biological fermentation process data, such as mul-
tiple working condition, multiple stage, and locality, this 
paper proposes a soft sensor modeling method based on 
the transfer modeling framework of substructure domain 
for multiple working conditions of the fermentation pro-
cess of Pichia pastoris, as shown in Fig. 1.

Aiming at the multi-stage characteristics of the exog-
enous protein production process by Pichia pastoris 
fermentation, a transfer learning framework of substruc-
ture domain is introduced, in which the sample data are 
clustered to obtain the datasets (substructure domains) 
of each fermentation stage, and the substructures are 
weighted according to the distances between the sub-
structures of the source and target domains, with larger 
weights indicating smaller discrepancies between the 
corresponding substructures of the source and target 
domains, and the weighted sub-source domains and the 
corresponding sub-target domains are taken as the novel 
sample data for the data transfer and transformation, 
which avoids the problem that the local prediction values 
of a single global soft sensor model deviate greatly from 
the actual values when estimating the key biological vari-
ables of the fermentation process, leading to an increase 
in the prediction error of the model. Simultaneously, 
considering the characteristics of multiple working con-
ditions of the process of exogenous protein production 
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by Pichia pastoris fermentation, on the basis of sub-
structural transfer, combining data transfer and subspace 
alignment, using multiple metric strategies (maximum 
variance, manifold regularization and distribution dis-
crepancy minimization) to obtain the optimal projec-
tion matrices of the subspaces of the source and target 
domains, and projecting the data of each sub-source 

and sub-target domains into the subspaces for subspace 
alignment, which reduces the data distribution discrep-
ancy among different working conditions and preserves 
the internal attributes and the neighborhood structure 
of the original data, to effectively solve the problem of 
model failure caused by multiple working conditions. 
Finally, the LSSVM prediction model is established using 

Fig. 1 The transfer learning framework of substructure domain based on OSDA-LSSVM
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the source and target domain data after substructure 
domain adaptation to realize the real-time prediction of 
the key biological variables in the production process of 
Pichia pastoris fermentation.

Substructure domain learning strategies
Aiming at the problem that the traditional transfer 
method is prone to lose data information in the over-
all transfer, and is difficult to achieve the perfect match 
between the two domains, thus reducing the accu-
racy of the soft sensor model, this paper introduces 
the transfer learning strategy of substructure domain 
transfer to achieve a more detailed substructure-level 
match between the two domains [20]. The substructure 
domain transfer strategy firstly clusters the source and 
target domain data using the GMM clustering algorithm 
to obtain the substructures (sub-source domains and 
sub-target domains) of the two domains. Then, the sub-
source domains are adaptively weighted according to the 
distance between the sub-source domain and sub-target 
domain, and the weights represent the degree of similar-
ity of the substructures in the two domains. Finally, map-
ping is performed between the substructures of the two 
domains, i.e., knowledge transfer is performed at each 
stage corresponding to the known working conditions 
and the working conditions to be measured, which in 
turn reduces the discrepancy between the two domains. 
Substructure-level transfer pays more attention to the 
transfer between substructures with small discrepancies, 
performs more fine-grained transfer learning between 
the sub-target domain and its most relevant sub-source 
domain, and avoids the noise introduced by domain-level 
transfer to a certain extent, so as to make better use of 
local information and improve the prediction accuracy of 
soft sensor.

Acquisition and representation of substructures
Using χ and δ ∼ N (0, σ 2) to represent the sample charac-
terization data, χk conforms to N (εk , σ k) , a Gaussian dis-
tribution. εk denotes the kth substructure center value, σ k 
denotes the kth substructure covariance, and χk denotes 
that the data belongs to the kth substructure. The εk and 
σ k can be obtained through χ . Considering the source 
and target domains as a mixture of GMM distributions, 
the Bayesian information criterion (BIC) is utilized to 
determine the number of substructures, i.e.

Where, L represents the maximum value of the likeli-
hood function of the estimated model, h represents the 
number of free parameters to be estimated, and n repre-
sents the sample size. The goal is to seek to minimize h of 
BIC.

(1)BIC = −2 ln(L)+ h ln(n)

After obtaining the substructure of the source domain 
and the target domain, the two domains can be repre-
sented as: τs =

∑ks
i=1 w

s
i δεsi , τt =

∑kt
j=1 w

t
j δεtj

 . This repre-
sentation uses only the information of the cluster center, 
and the calculation is simple and efficient. Where ε repre-
sents the cluster center, δε is the Dirac function at posi-
tion ε , τs and τt are the distribution of the source and 
target domains respectively, and w is the probability asso-
ciated with ε . Obviously, 

∑ks
i=1 w

s
i = 1 , 

∑kt
j=1 w

t
j = 1 . Here 

the square Euclidean distance is chosen as the cost 
between the source domain substructure εsi and the tar-
get domain substructure εtj  , i.e.

Adaptive weighting of substructure based on optimal 
transmission
Since the target domain has less labeling informa-
tion, the same weight is given to the substructure of the 
target domain, i.e., fixing wt

j  to 1/kt . It is known that 
∑ks

i=1 w
s
i = 1 , the source domain substructure can be 

weighted by locally optimal transport with the following 
optimization objective.

Where, 〈π ,C〉F is the total cost of the locally optimal 
transportation problem, H(π) =

∑

ijπij log πij is the 
entropy term, 〈�, �〉F is the Frobenius dot product, C is the 
cost matrix, π is the coupling matrix between the two 
probability distribution functions, and � is the hyperpa-
rameter of the balance calculation speed and precision.

Through Lagrange method, it is easy to obtain the opti-
mal π∗

1  as

Where, π0 = e(−C/�)−1 is the result of the initialization, 
and ⊘ denotes division by elements. After obtaining the 
optimal coupling matrix π∗

1  , the weight of each substruc-
ture of the source domain is ws = π∗

1 1kt.
After obtaining the weighted source domain sub-

structures and target domain substructures, mapping 
between the substructures, i.e., knowledge transfer at 
the substructure level, can be performed. Compared 
with the overall transfer learning at the domain level, the 
substructure-level transfer learning is more detailed and 
more in line with the multi-stage characteristics of the 
Pichia pastoris fermentation. The main process of sub-
structural transfer learning is shown in Fig. 2.

(2)C(εsi , ε
t
j ) = εsi − εtj

2

(3)
π∗
1 = arg min

π

�π ,C�F + �H(π)

s.t. πT1ks = wt

(4)π∗
1 = π0diag(w

t ⊘ πT
0 1ks)
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Substructure mapping based on optimal subspace domain 
adaptation
Both traditional data centric and subspace centric 
domain adaptation methods have certain limitations. The 
data centric transfer learning method seeks a transfor-
mation matrix that minimizes the distance between the 
source and target domains in the common space, and due 
to the distribution discrepancy between the source and 
target domain data, there may not be such a common 
projection matrix. However, the subspace centric trans-
fer learning method assumes that the source and target 
domain data have similar distribution in the transformed 
subspace, and the subspace alignment may fail when the 
discrepancy between the two domains is large.

Based on the above analysis, and considering the 
characteristics of industrial process data such as multi-
ple working condition, multiple stage and locality, this 
paper proposes an optimal subspace domain adaptation 
(OSDA) method using the shared and domain-specific 
features of two domains. This method minimizes the dis-
tribution discrepancy between the two domains based 
on the improved balanced distribution adaptation algo-
rithm, and introduces the maximum variance and mani-
fold regularization methods to ensure that the projected 
data can retain the internal attributes and neighborhood 
structure of the original data, and seeks the two mutu-
ally coupled optimal projections. Secondly, the optimal 
projection matrices are used to replace the traditional 
projection matrices (obtained by principal component 
analysis (PCA) used by the geodetic flow kernel (GFK) 
method) to project the source and target domain data 
into the source and target domain subspaces, respec-
tively, and further align the subspaces so as to reduce the 
discrepancy between the source and target domain data. 
The OSDA method combines the data centric and sub-
space centric methods, and reduces the discrepancies of 
different batches of Pichia pastoris fermentation data in 
terms of statistics and geometry structure, which makes 
the established soft sensor model applicable to new 

working conditions and improves the generalization abil-
ity of the soft sensor model.

Assumed a labeled source domain sample 
Ds = {xsi, ysi}nsi=1 and a less labeled or unlabeled tar-
get domain sample Dt = {xtj}ntj=1 of Pichia pastoris fer-
mentation. The source domain feature data is denoted 
as Xs ∈ R

d×ns , and the target domain feature data is 
denoted as Xt ∈ R

d×nt , where d represents the sample 
feature dimension, and ns and nt represent the num-
ber of samples in the source domain and target domain 
respectively. Assume that the feature space and label 
space of the two domains are the same, i.e., Xs = Xt , 
Ys = Yt . But the marginal probability distribution and 
conditional probability distribution are different, i.e., 
P(xs)  = P(xt) and P(ys|xs) �= P(yt |xt).

Optimal subspace acquisition
In traditional transfer learning, balanced distribution 
adaptation (BDA) method is mainly used to solve the 
problem of process data distribution matching. BDA 
adapts the marginal distribution and conditional dis-
tribution between two domains via maximum mean 
discrepancy (MMD), thereby reducing the discrepancy 
in probability distribution between the two domains 
[21, 22]. Marginal distribution adaptation calculates 
the distance between the sample mean of the source 
domain and the target domain in the low-dimensional 
embedding, so that the marginal probability distribu-
tions of the two domains are approximately equal after 
projection, i.e., P(Ws

Txs) ≈ P(Wt
Txt) . Conditional 

distributed adaptation utilizes the class conditional 
probability to approximate the conditional probabil-
ity, trains a classifier through source domain data to 
obtain the target domain pseudo-label Ŷt , and iterates 
times T to improve the accuracy of the pseudo-label. 
Conditional distribution adaptation calculates the dis-
tance between the sample means of all classes, such 
that P(ys|Ws

Txs) ≈ P(yt |Wt
Txt) . The discrepancy in 

Fig. 2 Substructural transfer learning framework
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probability distributions between the two domains is 
defined as follows.

Where, η is a balance factor and η ∈ [0, 1] , is used to 
dynamically adjust the importance of the marginal and 
conditional distributions. n(c)s  and n(c)t  denote the number 
of samples belonging to class c in the source and target 
domains, and X (c)

s  and X (c)
t  denote the samples belonging 

to class c in the source and target domains, and Ws and Wt 
are projection matrices that project the source domain 
and the target domain into the subspace, respectively.

MMD conditional distribution adaptation is to use 
class conditional probability to approximate conditional 
probability, while the soft sensor modeling process of 
biochemical reaction process belongs to the regression 
task, and its labels are continuous. If BDA method is used 
for transfer learning, continuous labels need to be con-
strained into classes to obtain “class labels”, and then con-
ditional distribution adaptation is realized.

Based on the above, this paper introduces the concept 
of fuzzy set [23], and restricts the continuous labels in 
the fermentation process to the fuzzy class through fuzzy 
set, i.e., the values at 5%, 50% and 95% of the continuous 
labels in the source and target domains are taken as the 
class center of the fuzzy class. As shown in Fig. 3a, each 
continuous source domain label can belong to three fuzzy 
classes of  smalls,  mediums and  larges at the same time.

The class of  smalls is taken as the first class, the class of 
 mediums as the second class, and the class of  larges as the 
third class, and the membership degree µs

ic indicates the 
extent to which the source domain label ysi belongs to the 
class c. The membership degree is normalized according 
to µs

ic for each class. i.e.

(5)

D(Xs ,Xt ) ≈ (1− η)
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Similarly, three fuzzy classes of the target domain 
pseudo-label can be obtained, as shown in Fig.  3b. Its 
membership degree is:

According to Eqs. 5, 6 and 7, the updated distribution 
discrepancy is defined as:

Introducing the kernel trick, the distribution discrep-
ancy function is rewritten as follows.

Where, W =
[

Ws

Wt

]

,

(6)
µ̄s
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µs
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Fig. 3 Fuzzy class division
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Meanwhile, to ensure the ability to represent different 
features of the source domain and the target domain, and 
avoid projecting the features of the source domain and 
the target domain into unrelated dimensions, this paper 
introduces the maximum variance (MV) [24]. The opti-
mization objective is set as:

Where,

Where, Hs = Is − 1
ns
1s1

T
s  and Ht = It − 1

nt
1t1

T
t  are 

both central matrices, Is ∈ R
ns×ns and It ∈ R

nt×nt are 
identity matrices, and 1s ∈ R

ns and 1t ∈ R
nt are all-one 

column vectors.
Moreover, in order to further maintain the structural 

information of the source and target domains during 
the projection process, manifold regularization (MR) is 
introduced to extract the local neighborhood features of 
the data through MR, and maintain this structure in the 
manifold space after the projection [25, 26]. Its objective 
function is:

Where, Gij = e−�xi−xj�2/t denotes the similarity 
between the two sample points xi and xj , and the final 
regularization can be written as:

Where,

(13)

Mst = Xs

(

(1− η)Nst + η

3
∑

c=1

N
(c)
st

)

Xt
T
,Nst = − 1

nsnt
1s1

T
t ,

(N
(c)
st )ij =

{

−µ̄s
icµ̄

t
jc xi ∈ X

(c)
s , xj ∈ X

(c)
t

0 otherwise

(14)

Mts = Xt

(

(1− η)Nts + η

3
∑

c=1

N
(c)
ts

)

Xs
T
,Nts = − 1

nsnt
1t1

T
s ,

(N
(c)
ts )ij =

{

−µ̄t
icµ̄

s
jc xi ∈ X

(c)
t , xj ∈ X

(c)
s

0 otherwise

(15)max
W

Tr
(

WTSmvW
)

(16)Smv =
[

Vs 0
0 Vt

]

(17)Vs = XsHsX
T
s

(18)Vt = XtHtX
T
t

(19)Rf (Xs,Xt) =
ns+nt
∑

i,j=1

Gij

∥

∥

∥
WT

s xi −WT
t xj

∥

∥

∥

2

F

(20)min
W

Tr
(

WTSmrW
)

Where, L = D − G is the Laplacian matrix and 
Dii =

∑ns+nt
j=1 Gij is the diagonal matrix.

The improved OSDA greatly reduces the discrepancy 
between the source and target domain subspaces by 
simultaneously optimizing Ws and Wt to be close to the 
source and target domain subspaces.

To control the size of the projection matrix, regular 
constraints ‖Ws‖2F and ‖Wt‖2F are further introduced. The 
objective function is set as follows.

Combining Eqs. 9, 15, 20 and 26, the objective function 
is obtained as follows.

Where, θ1 , θ2 and θ3 are balancing parameters that bal-
ance the importance of each quantity and take values 
in the range of [0, 1], and α and β are the regular coef-
ficients. Combining Eqs. 10, 16 and 21 rewrites Eq. 27 as:

By the Lagrangian method, it is finally obtained:

Where, φ = diag(�1, ..., �m) is the first m eigenvalues, 
W = (W1, ...,Wm) contains the corresponding eigen-
vectors, which can be solved by generalized eigenvalue 
decomposition, and finally the optimal projection matri-
ces Ws and Wt are obtained.

(21)Smr =
[

Rs Rst

Rts Rt

]

(22)Rs = XsLsX
T
s

(23)Rst = XsLstX
T
t

(24)Rts = XtLtsX
T
s

(25)Rt = XtLtX
T
t

(26)min
Ws ,Wt

� Ws −Wt �2F + � Ws �2F + � Wt �2F

(27)

max
θ1{MV }

{MMD} + θ2{MR} + θ3 � Ws −Wt �2F +α � Ws �2F +β � Wt �2F

(28)

max
W

Tr

(

WT

[

θ1Vs

θ1Vt

]

W

)

s.t. Tr

(

WT

[

Ms + θ2Rs + (θ3 + α)I Mst + θ2Rst − θ3I

Mts + θ2Rts − θ3I Mt + θ2Rt + (θ3 + β)I

]

W

)

= 1

(29)

[

θ1Vs

θ1Vt

]

W =
[

Ms + θ2Rs + (θ3 + α)I Mst + θ2Rst − θ3I

Mts + θ2Rts − θ3I Mt + θ2Rt + (θ3 + β)I

]

Wφ
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Subspace alignment
Consider the optimal projection matrices Ws and Wt as 
two points in the manifold space, such that Ws = �(0) , 
Wt = �(1) , and a geodesic {�(t) : 0 ≤ t ≤ 1} between 
the two points can form a path between the two sub-
spaces. The phenomenon of drift between domains is 
reduced by finding a geodesic line from �(0) to �(1).

The features in the transformed manifold space can be 
denoted as z = �(t)Tx . The transformation from �(0) 
to �(1) passes through several points, which is accom-
plished by defining a semi-positive definite geodetic flow 
kernel through the inner product of the transformed 
features.

The source and target domain data after subspace 
alignment are: Zs =

√
GXs , Zt =

√
GXt.

Different from the traditional GFK method, OSDA uses 
multiple metric strategies (maximum variance, manifold 
regularization and distribution discrepancy minimiza-
tion) to obtain the optimal projection matrices of the 
source and target domain subspaces, and uses the opti-
mal projection matrices to replace the Ss and St projec-
tion matrices obtained by PCA method in GFK, which 
better realizes the alignment of the source domain sub-
spaces and target domain subspaces.

Least squares support vector machine
Considering that the least squares support vector 
machine (LSSVM) has better performance in solving 
small sample and nonlinear problems, this paper adopts 
the source and target domain data after substructure 
domain adaptation to train the LSSVM, and constructs 
the soft sensor model of the production process of Pichia 
pastoris fermentation.

LSSVM is a novel type of support vector machine pro-
posed by Suykens on the basis of support vector machine 
for solving model decomposition and function estima-
tion problems [27]. Suppose there are l training samples 
{(xi, yi)|i = 1, 2, ..., l} , in which the samples are n-dimen-
sional vectors, xi ∈ R

n is the sample input, yi ∈ R
n is the 

sample output, and the optimization objective of LSSVM 
is:

(30)

〈

zi, zj
〉

=
∫ 1

0

(

�(t)Txi

)T(

�(t)Txj

)

dt = xTi Gxj

(31)
min
ω,b,ξ

J (ω, ξ) = 1

2
ωTω + 1

2
γ

l
∑

i=1

ξ2i

s.t. yi = ωTϕ(xi)+ b+ ξi(i = 1, 2, · · · , l)

Where, ω is the weight vector, ξi is the error variable, b 
is the deviation quantity, γ is the penalty coefficient, and 
ϕ(�) is the nonlinear mapping.

The final function is estimated by the Lagrangian 
method to solve for:

Where, K (x, xi) is the kernel function, which has vari-
ous forms such as radial basis function (RBF) and poly-
nomial function. In this paper, RBF is used as the kernel 
function. For the two hyperparameters that affect the 
performance of LSSVM model, the regular coefficient 
and kernel width, this paper simply combines the fast 
leave-one-out cross-validation method to optimize the 
regular coefficient and RBF kernel width.

Soft sensor modeling based on OSDA‑LSSVM
Considering the characteristics of Pichia pastoris fer-
mentation, such as multiple working condition, multiple 
stage and locality, this paper transfers and transforms the 
fermentation process data based on the transfer mod-
eling framework of substructure domain, and constructs 
a soft sensor model of the fermentation process based on 
the LSSVM modeling method with simple structure and 
strong generalization ability. In addition, we verify the 
performance of the soft sensor model in the simulation 
environment of MATLAB 2017a (with LSSVM support 
package added).

The specific steps of soft sensor modeling method 
based on the transfer modeling framework of substruc-
ture domain are as follows: 

Step1: The sample data of Pichia pastoris fermenta-
tion experiment were obtained, and the sample data-
sets were established, and the datasets were preproc-
essed. According to the consistent correlation degree 
method, auxiliary variables with correlation degree 
greater than 0.8 were selected to construct the data 
of source domain Ds = {Xs,Ys} and target domain 
Dt = {Xt}.
Step2: The substructures of source and target domain 
data are obtained by GMM clustering algorithm, 
and the sub-source domains are adaptively weighted 
according to the distance between the sub-source 
and sub-target domains.
Step3: The weighted sub-source domains D1

s ,D
2
s , ...,D

ks
s  

and the corresponding sub-target domains 
D1
t ,D

2
t , ...,D

kt
t  are used as novel sample data to train 

(32)f (x) =
l

∑

i=1

αiK (x, xi)+ b
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the LSSVM model, and the pseudo labels Ŷ 1
t , Ŷ

2
t , ..., Ŷ

kt
t  

of the sub-target domains are obtained.
Step4: The sub-source domains and sub-target 
domains with pseudo labels are taken as new sample 
data, and the optimal projection matrices Ws and Wt 
are calculated by the optimal subspace domain adap-
tation method integrating multiple metric strategies 
(maximum variance, manifold regularization and dis-
tribution discrepancy minimization). Then, the data 
of each sub-source domain and sub-target domain 
are projected into the subspace to further realize 
the transformation from sub-source domain to sub-
target domain, and obtain the data of source domain 
and target domain after reducing the distribution dis-
crepancy.
Step5: The LSSVM soft sensor model is built using 
the source domain data {Zs,Ys} and target domain 
data {Zt} after substructure domain adaptation to 
obtain the actual predicted labelsYt.

In summary, Algorithm 1 shows more specific steps for 
OSDA-LSSVM.

Algorithm 1 Optimal Subspace Domain Adaptation 
based on LSSVM

Results

Fructooligosaccharide(FOS) has been widely used in the 
field of health food because of its indigestibility, low car-
ies coelicity and improving lipid metabolism. At present, 
one of the ways to prepare FOS is to hydrolyze inulin with 
endo-inulinase produced by Pichia pastoris fermentation. 

Important biochemical variables involved in the fermen-
tation process of Pichia pastoris include Pichia pastoris 
concentration, methanol concentration and inulinase 
concentration, among which the methanol concentration 
can be measured online by the corresponding laboratory-
level analytical instrument or meters, while the Pichia 
pastoris concentration and inulinase concentration can 
only be obtained by offline and laboratory analysis in 
more cases, which not only costs a lot of manpower and 
material resources, but also affects the implementation of 
fermentation process control strategy and the improve-
ment of fermentation technology. Based on this, this 
paper constructs the soft sensor model of the key biologi-
cal variables (Pichia pastoris concentration and inulinase 
concentration) in the process of inulinase production 
by Pichia pastoris fermentation based on the transfer 
modeling framework of substructure domain, to provide 
important information for the online control and optimi-
zation of the process of inulinase production by Pichia 
pastoris fermentation.

Pichia pastoris GS115, MutsHis+ strain was selected 
for methanol-induced expression of inulin endonuclease 
INU2 on the transformants, and the enzyme activity of 
recombinant inulinase was detected. The inulinase gen-
eration process test platform was provided by Yangzhong 

Weikert Bioengineering Equipment Co., Ltd, and the 
RTY0-C-100L fermenter was used as the fermentation 
equipment. The process of inulinase generation by Pichia 
pastoris fermentation is shown in Fig. 4.
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In order to make the experiment close to the actual 
production process, the experimental process is designed 
as follows: 

1. According to the requirements of Pichia pastoris 
strain inoculation, preparation of medium, shaking 
bottle culture and sterilization of fermentation equip-
ment were carried out. The medium was then steri-
lized at 130°C for 30 minutes. When the temperature 
dropped to 30°C, the strain was introduced into the 
fermenter by flame inoculation method. The initial 
fermentation conditions are shown in Table 1.

2. The auxiliary variables sampled every 15 minutes 
were archived in a structured database. Pichia pas-
toris concentration and inulinase concentration were 
sampled offline every two hours and recorded. The 
data pairs of auxiliary variables and biological vari-
ables were established by interpolation method as the 
fermentation sample data of this batch. We selected 
fermentation broth temperature (T), pH, dissolved 
oxygen concentration (Do), stirring rate (r), and 
intake flow rate (V) as auxiliary variables.

3. The fermentation cycle of Pichia pastoris is 90 hours, 
and each batch contains 180 sample data. The aux-
iliary variables were taken as inputs, Pichia pastoris 

concentration and inulinase concentration as out-
puts, which were combined with the established soft 
sensor model to realize the real-time prediction of 
key biological variables.

To verify whether each strategy has a positive effect 
on the soft sensor model, we establish soft sensor mod-
els that remove a certain strategy and compare it with 
the model proposed in this paper. As shown in Fig.  5a, 
when the MV strategy is removed(Model1, i.e., θ1 = 0 ), 
the predicted value of the model for Pichia pasto-
ris concentration begins to deviate greatly from the 
actual value, and as shown in Table  2, compared with 

Fig. 4 Diagram of the process of Pichia pastoris fermentation to produce inulinase

Table 1 Initial fermentation conditions of Pichia pastoris 

Environment variables Initial setting value

Fermenter pressure 0.04Mpa

Motor stirring speed 300 400r/min

Ventilation capacity 150-300L/M

Fermentation liquid temperature 28±1°C

PH 5.0±0.4
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the original OSDA-LSSVM model, the root mean 
square error increases, the coefficient of determination 
decreases, and the model performance decreases, which 
indicates that the MV strategy is very necessary. Simi-
larly, Fig.  5b shows that the performance of the model 
is reduced to a certain extent when the MR Strategy is 
removed(Model2, i.e., θ2 = 0 ), and Table  2 also shows 
the important role of the MR Strategy in the soft sen-
sor model. In addition, when the � Ws −Wt � term is 
removed(Model3, i.e., θ3 = 0 ), as shown in Fig.  5c, the 
performance of the model decreases slightly, and it can 
be seen from Table 2 that this strategy has little effect on 
the soft sensor model. When the subspace alignment car-
ried out by GFK method is removed(Model4), it can be 
seen from Fig. 5d and Table 2 that the performance of the 
model decreases greatly. In conclusion, MV, MR and GFK 
play an important role in soft sensor modeling methods.

To verify the validity of the soft sensor modeling 
method proposed in this paper, the key biological 
variables(Pichia pastoris concentration and inulinase 
concentration) were predicted based on the constructed 

Fig. 5 Comparison experiment of the influence of each strategy module on the model

Table 2 The assessment metrics of the comparison experiment 
of each strategy module

Soft sensor model Pichia pastoris concentration

RMSE R2

OSDA-LSSVM 0.9560 0.9936

Model1 2.5049 0.9560

Model2 1.6229 0.9815

Model3 1.2229 0.9895

Model4 1.5302 0.9836



Page 13 of 20Wang et al. BMC Biotechnology          (2024) 24:104  

OSDA-LSSVM soft sensor model. Meanwhile, in order 
to verify the superior performance of the OSDA-LSSVM 
soft sensor model, this paper also established the LSSVM, 
GFK-LSSVM, BDA-LSSVM and OSDA-LSSVM soft sen-
sor models based on the same batch of data. The pre-
diction curves of the four soft sensor models for Pichia 
pastoris concentration are shown in Figs.  6  and  7 illus-
trates the curves of each of the four models to track the 
actual value, where the “Actual Value” is the Pichia pasto-
ris concentration value sampled offline.

The LSSVM model in Fig.  7 uses RBF and adopts the 
reservation-one parameter algorithm to optimize the two 
hyperparameters of kernel function width and regulari-
zation coefficient. By comparing the prediction results 
of the LSSVM and GFK-LSSVM models in Fig. 7, it can 
be seen that there is a significant deviation in the overall 
prediction curve of the LSSVM model that uses the tra-
ditional reservation-one parameter algorithm to optimize 
hyperparameters. The GFK-LSSVM model introduces 
the subspace alignment algorithm in transfer learning, 
projects the sample data into the manifold space through 
the projection obtained by PCA, realizes the transforma-
tion of the training sample to the test sample, and thus 
improves the performance of the model. However, the 
local predicted value of GFK-LSSVM model deviates 
greatly from the actual value.

Compared with the GFK-LSSVM model, the BDA-
LSSVM model combined with the BDA in transfer 
learning seeks a transformation that minimizes the dis-
crepancy between the probability distribution of the 
training data and the test data in the common space, so 
that the prediction curve of the model is more consistent 
with the actual value. According to the results of many 
experiments, when the balance factor η of adjusting the 
marginal probability distribution and conditional prob-
ability distribution in BDA is set to 0.6, the BDA-LSSVM 
model has superior prediction performance.

Compared to the BDA-LSSVM model, the OSDA-
LSSVM soft sensor model based on the transfer mod-
eling framework of substructure domain proposed in 
this paper reduces the discrepancies of different batches 
of Pichia pastoris fermentation data in terms of statis-
tics and geometric structure, so it can make full use of 
the local information of fermentation process data, and 
has higher prediction accuracy than the overall trans-
fer soft sensor modeling, which can effectively improve 
the accuracy of soft sensor model under multiple work-
ing conditions. During the simulation process, we set the 
parameter η = 0.6 in OSDA to balance the two probabil-
ity distributions, and set the balance parameters θ1 = 1 , 
θ2 = 1 and θ3 = 1 , i.e., the default is equally important. 
The number of iterations T = 10 , the dimension of the 
final projection matrix m = 5 . As can be seen from Fig. 7, 

Fig. 6 Prediction curves for Pichia pastoris concentration
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the performance of OSDA-LSSVM soft sensor model is 
further improved, which can achieve real-time online 
accurate prediction of Pichia pastoris concentration.

In order to further verify the performance of the 
OSDA-LSSVM soft sensor model, the inulinase concen-
tration in Pichia pastoris fermentation process is pre-
dicted based on the LSSVM, GFK-LSSVM, BDA-LSSVM 
and OSDA-LSSVM soft sensor models. As shown in 
Figs. 8 and 9, the simulation results show that the OSDA-
LSSVM model also has superior performance in tracking 
and predicting inulinase concentration compared with 
the other three models, and its prediction curve can basi-
cally fit the actual value of inulinase concentration.

The relative error curves for Pichia pastoris concen-
tration and inulinase concentration demonstrate more 
directly the predictive performance of the four soft sen-
sor models, as shown in Figs.  10 and 11. Simulation 
results show that the proposed OSDA-LSSVM model has 
the smallest error.

To comprehensively compare the prediction effects 
of the four soft sensor models, this paper uses the root 
mean square error (RMSE) and coefficient of determina-
tion  (R2) to evaluate the prediction ability of the four soft 
sensor models, as shown in Table 3.

As can be seen from Table 3, compared with the other 
three models, the OSDA-LSSVM model has the smallest 

RMSE in predicting Pichia pastoris concentration and 
inulinase concentration, and its  R2 is closer to 1. To fur-
ther verify the universality of the proposed model, the 
performance of the model is verified on another valida-
tion set, as shown in the Figs. 12 and 13. The results show 
that the OSDA-LSSVM soft sensor model has better gen-
eralization ability and higher prediction accuracy under 
multiple working conditions, and can better deal with the 
nonlinearity, time-varying and coupling of Pichia pasto-
ris fermentation process.

Discussion
To address the limitations of single global model and 
traditional domain-level transfer learning method, this 
paper introduces the transfer learning strategy of sub-
structure domain adaptation to achieve more detailed 
substructure-level matching between the two domains, 
extracts the local information of the Pichia pastoris fer-
mentation process by Gaussian mixture model cluster-
ing algorithm, clusters the source and target domain 
data into multiple substructure domains, and constructs 
a local transfer framework to improve the model predic-
tion performance. Meanwhile, on the basis of data trans-
fer, combined with the method of subspace alignment, 
instead of seeking a common subspace with the smallest 
discrepancy, it seeks the respective subspaces of the two 

Fig. 7 Prediction curves of different models for Pichia pastoris concentration
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Fig. 8 Prediction curves for inulinase concentration

Fig. 9 Prediction curves of different models for inulinase concentration
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Fig. 10 Relative error curves of different soft sensor models in predicting Pichia pastoris concentration

Fig. 11 Relative error curves of different soft sensor models in predicting inulinase concentration
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domains and approaches the two subspaces to reduce 
the data discrepancies, and proposes the OSDA method 
that utilizes the shared features of the two domains and 
the domain-specific features, which reduces the domain 
discrepancy in terms of both the statistic and geometri-
cal structures. From Figs. 6, 7, 8 and 9, the overall predic-
tion curve of the proposed OSDA-LSSVM model is able 
to fit the actual value and show good local performance. 
From Figs. 10, 11, 12, 13 and Table 3, the proposed model 
significantly reduces the model prediction error under 
multiple working conditions. The simulation results show 
that the OSDA-LSSVM soft sensor model based on the 
transfer learning strategy of substructure domain adapta-
tion exhibits superior performance under multiple work-
ing conditions.

Of course, the OSDA-LSSVM model also has some 
limitations. Compared with online models, it is not able 
to update the model with newly generated samples in a 
timely manner, which may lead to model performance 
degradation. In addition, when the OSDA-LSSVM model 
is applied to different biochemical reaction processes, 
the number of primary and auxiliary variables needs to 
be determined manually, which is highly subjective. The 
changes of auxiliary variables in different biochemi-
cal reactions are significantly different, and the number 
of primary and auxiliary variables directly affects the 
response speed of the model. If the number of manually 
determined auxiliary variables is too high, it will increase 
the complexity of the model, and then affect the response 
speed of the model. On the contrary, if the number of 
auxiliary variables is too small, the complexity of the 
model will be reduced, resulting in the decline of predic-
tion accuracy. In addition, since the fermentation process 
data set is obtained through offline sampling, the sample 
data is very limited, which limits the training effect of the 
soft sensor model to a certain extent.

In conclusion, it is necessary to further combine online 
learning in future research, and knowledge transfer in 
multi-source domains can solve the problem of sample 
limitation and the limitations of offline models. Mean-
while, the adaptive selection of primary and auxiliary 
variables can balance the response speed and prediction 

Table 3 Assessment metrics for different models to predict 
Pichia pastoris 

Soft sensor model Pichia pastoris 
concentration

Inulinase 
concentration

RMSE R2 RMSE R2

LSSVM 1.8907 0.9749 0.1215 0.9832

GFK-LSSVM 1.5191 0.9838 0.0904 0.9907

BDA-LSSVM 1.1557 0.9906 0.0653 0.9952

OSDA-LSSVM 0.9695 0.9934 0.0548 0.9966

Fig. 12 The soft sensor model predicts Pichia pastoris concentration on the validation set
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accuracy of the model to a certain extent, thus provid-
ing a basis for further model optimization and predictive 
control of biochemical reaction system.

Conclusion
The fermentation process of Pichia pastoris is character-
ized by multiple working condition, multiple stage and 
locality, and the performance of the traditional soft sen-
sor model will be degraded or even model failure when 
the operating conditions are changed. In this paper, the 
OSDA-LSSVM soft sensor modeling method based on 
the modeling framework of substructure domain trans-
fer is proposed. Aiming at the multi-stage characteristics 
of the fermentation process of Pichia pastoris, a trans-
fer learning framework of substructure domain is intro-
duced to carry out data transfer and modeling in different 
stages of Pichia pastoris fermentation, which effectively 
improves the local prediction performance of the model. 
Meanwhile, in order to solve the problem of data discrep-
ancy caused by multiple working conditions, the OSDA-
LSSVM soft sensor method combines data transfer and 
subspace alignment, utilizes multiple metric strategies 
(maximum variance, manifold regularization and distri-
bution discrepancy minimization) to obtain the optimal 
projection matrices of the subspaces of the source and 
target domains, and projects the data of each sub-source 
domain and sub-target domain into the subspaces to 

perform subspace alignment. It reduces the data distri-
bution discrepancy of different working conditions and 
retains the internal attributes and neighborhood struc-
ture of the original data, which effectively solves the 
model failure problem caused by multiple working con-
ditions. Taking Pichia pastoris fermentation to produce 
inulinase as an example, different batches of data are 
used as source domain and target domain to verify the 
performance of the soft sensor model. The simulation 
results show that the OSDA -LSSVM model can accu-
rately predict Pichia pastoris concentration and inulinase 
concentration online under different working conditions, 
which has higher prediction accuracy than the traditional 
soft sensor modeling method, and the method can be 
extended to other biological fermentation fields.

The model has advantages in terms of real-time and 
efficiency in the control of biochemical reactions, 
which is essential to optimize the performance and 
stability of the controller, making it highly suitable for 
industrial applications. In the field of process control, 
in order to improve the response efficiency of the sys-
tem, the time complexity, memory algorithm complex-
ity and computational complexity of the algorithm must 
be analyzed, but this is not the main focus of this paper, 
and we do not provide a detailed explanation. However, 
in the design and application of industrial biochemical 

Fig. 13 The soft sensor model predicts inulinase concentration on the validation set
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reaction control system, the above problems are worthy 
of further research and development.
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