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Abstract
Pathogenic fungi employ numerous strategies to colonize plants, infect them, reduce crop yield and quality, and 
cause significant losses in agricultural production. The increasing use of chemical pesticides has led to various 
ecological and environmental issues, including the emergence of resistant weeds, soil compaction, and water 
pollution, all negatively impacting agricultural sustainability. Additionally, the extensive development of synthetic 
fungicides has adverse effects on animal and human health, prompting the exploration of alternative approaches 
and green strategies for phytopathogen control. Microorganisms living in sponges represent a promising source of 
novel bioactive secondary metabolites, potentially useful in developing new nematicidal and antimicrobial agents. 
This study focuses on extracting bioactive compounds from endosymbiotic bacteria associated with the marine 
sponge Hyrtios erect sp. (collected from NIOF Station, Hurghada, Red Sea, Egypt) using various organic solvents. 
Bacillus sp. was isolated and identified through 16 S rRNA gene sequencing. The biocidal activity of Bacillus gotheilii 
MSB1 extracts was screened against plant pathogenic bacteria, fungi, and nematodes. The n-butanol extract 
showed significant potential as a biological fungicide against Alternaria alternata and Fusarium oxysporum. Both 
n-hexane and ethyl acetate extracts exhibited negative impacts against the plant pathogenic bacteria Erwinia 
carotovora and Ralstonia solanacearum, whereas the n-butanol extract had a positive effect. Regarding nematicidal 
activity, ethyl acetate and n-butanol extracts demonstrated in-vitro activity against the root-knot nematode 
Meloidogyne incognita, which causes serious vegetable crop diseases, but the n-hexane extract showed no positive 
effects. The findings suggest that bioactive compounds from endosymbiotic bacteria associated with marine 
sponges, particularly B. gotheilii MSB1, hold significant potential as alternative biological control agents against 
plant pathogens. The n-butanol extract, in particular, displayed promising biocidal activities against various plant 
pathogenic fungi, bacteria, and nematodes. These results support further exploration and development of such 
bioactive compounds as sustainable, environmentally friendly alternatives to synthetic pesticides and fungicides in 
agricultural practices.
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Introduction
Worldwide, approximately 40% of agricultural output 
is lost due to plant diseases, weeds, and pests. In the 
absence of pesticides, these crop losses would rise con-
siderably. Furthermore, these crop-protection agents 
not only prevent pest damage but also play a key role in 
boosting yields [1].

Pesticides are toxic chemical compounds, combinations 
of substances, or biological agents that are deliberately 
introduced into the environment to manage, prevent, 
and eliminate populations of various plant-pathogenic 
organisms. These agents function by luring and then 
controlling pests. Over time, pests can evolve resistance 
to pesticides, generating different substances, including 
toxins that are detrimental to both plants and humans. 
The hazards linked to pesticide usage now outweigh their 
advantages. Moreover, pesticides have profound effects 
on non-target species, disrupting animal and plant bio-
diversity and impacting both aquatic and terrestrial food 
webs and ecosystems [2–4]. The unchecked application 
of pesticides has resulted in a decline of numerous ter-
restrial and aquatic animal and plant species [5]. This 
situation has underscored the significance of biologically 
active secondary metabolites in agricultural use, spurring 
the creation of new types of pesticides [6–9].

The marine environment has emerged as an exception-
ally abundant source of powerful chemicals, with a mul-
titude of species adapted to thrive in extreme conditions 
[10–14]. Marine organisms are particularly noteworthy 
for their capacity to produce bioactive compounds that 
exhibit significant antimicrobial, anticancer, anti-inflam-
matory, analgesic, immunomodulatory, antiallergy and 
antiviral properties [10, 15, 16].

Recent research underscores the significant potential 
of marine sponges as a source of bioactive compounds. 
Anteneh et al. [17]. discovered that marine sponges from 
South Australia host diverse bacteria capable of pro-
ducing bioactive metabolites, with 70 out of 169 tested 
bacterial isolates showing antimicrobial activity against 
human pathogens such as Staphylococcus aureus and 
fungi. Notably, a novel compound from Streptomyces 
sp. was identified, highlighting these sponges’ poten-
tial as a source of new antibiotics. Similarly, Campana 
et al. [18]. revealed that sponges possess diverse micro-
bial communities that play a critical role in the cycling 
of dissolved organic matter (DOM) in marine ecosys-
tems. Using DNA-stable isotope probing and 16 S rRNA 
amplicon sequencing, they noted active DOM uptake by 
specific bacterial taxa, with PAUC34f, Poribacteria, and 
Chloroflexi identified as key players in organic matter 

degradation, while Nitrospirae may engage in mixotro-
phic metabolism.

Further, Sarjito et al. [19]. demonstrated the use of 
sponge-associated bacteria like Bacillus spp. to control 
vibriosis in shrimp, with chitosan encapsulation improv-
ing bacterial viability and shelf life. Bacillus altitudinis 
PH.1 encapsulated in chitosan showed high viability 
after 14 days at -20  °C and a strong anti-vibrio activity, 
suggesting chitosan as a promising preservation method. 
Wibowo et al. [20]. highlighted marine bacteria as a 
rich source of novel bioactive compounds against drug-
resistant pathogens. Research between January 2016 and 
December 2021 focused on secondary metabolites, with 
Streptomyces and other Actinobacteria revealing com-
pounds effective against MRSA, VRE, MDR-TB, and 
amphotericin B-resistant Candida albicans, indicating 
their potential in new drug development.

Additionally, Bibi et al. [21] noted sponges as rich 
sources of bioactive natural products synthesized by 
symbiotic bacteria, with approximately 5,300 natural 
compounds identified to date. These products are often 
produced due to environmental competition for space 
and nutrients. The review emphasizes sponge-microbe 
interactions, highlighting the significant industrial and 
pharmaceutical potential of sponge-associated bacte-
ria. Hentschel et al. [22]. highlighted the diverse micro-
bial communities within marine sponges, comprising 
close to 30 bacterial phyla and several archaeal lineages, 
which can constitute up to 35% of sponge biomass. The 
sequencing of the Amphimedon queenslandica genome 
has provided insights into animal evolution and sponge-
symbiont interactions, reinforcing the importance of 
marine sponges in studying host-microbe relationships.

Sponges are known to produce a wide array of chemi-
cally diverse bioactive substances, such as sterols, ter-
penes, nucleosides, cyclic peptides, and alkaloids [10, 23]. 
Although sponges themselves synthesize many of these 
valuable compounds, their microbial symbionts also play 
a crucial role in their production [24]. A significant part 
of the biomass of many marine sponges is composed of 
dense and genetically diverse microbial communities [24, 
25], which include bacteria, archaea, fungi, and microal-
gae [26–28].

Studies have shown that Bacillus species dominate the 
microbial communities within marine sponges [29–32]. 
These bacteria are particularly noted for producing a 
variety of antimicrobial peptides with diverse chemical 
structures, making them central to bacteriocin research. 
Bacillus strains exhibit the broadest array of agricultur-
ally beneficial compounds with significant potential 
[33, 34]. They are also renowned for producing various 
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antifungal compounds that control or suppress fungal 
pathogens [35–37]. Recently, volatile organic compounds 
(VOCs) synthesized by Bacillus species have been 
explored as a novel approach to managing plant fungal 
diseases [38–44]. These VOCs can diffuse between soil 
particles and spread extensively from their application 
sites, exerting inhibitory effects without direct contact 
between the VOC-producing microorganisms and target 
pathogens [45, 46]. Their potent antifungal properties, 
coupled with their safety for the environment and human 
health, make VOCs a promising and sustainable alterna-
tive to traditional fungicides for future plant pathogen 
control [47–49].

Alternaria alternata is a fungal pathogen responsible 
for early blight disease in tomatoes, potatoes, tobacco, 
and various other vegetables and crops, resulting in sub-
stantial agricultural losses [50, 51]. For instance, potatoes, 
one of the most crucial crops globally, can experience up 
to 80% annual yield reductions due to early blight in spe-
cific regions [38, 39]. At present, chemical fungicides are 
the most effective means to manage early blight. How-
ever, excessive and improper use of these fungicides has 
led to the development of resistant pathogens, threaten-
ing both food safety and human health [52, 53]. Fusarium 
species are another group of phytopathogens that impact 
numerous economically significant crops. Among them, 
Fusarium oxysporum is particularly widespread, with 
over 120 reported formae speciales [54]. To combat these 
diseases, a variety of agronomic practices have been 
devised, including biological control, cultural practices, 
and chemical interventions.

In this study, we isolated, purified, and characterized 
several active ingredients produced by marine bacte-
ria, aiming to explore their potential as alternatives to 
chemical pesticides. The effectiveness of these isolated 
compounds was evaluated against two pathogenic fungi; 
Alternaria alternata and Fusarium oxysporum, as well as 
the root-knot nematode Meloidogyne incognita.

Materials and methods
All chemicals and microbial media used in this study 
were sourced from Becton Dickinson (Sparks, MD, 
USA) and Loba Chemie PVT. LTD (Mumbai, India), 
with additional chemicals purchased from Sigma-Aldrich 
(St. Louis, MO, USA).

Sponge collection, identification and storage
A marine sponge sample was collected from the Red 
Sea near Hurghada, Egypt, at a depth of 2  m, close to 
the National Institute of Oceanography and Fisheries 
Station (coordinates: N 27 17 07.45, E 33 46 26.50). The 
sponge was identified as Hyrtios erecta (Order Dictyoc-
eratida, Family Thorectidae) thanks to Prof. Rob. W. M. 
van Soest from the Department of Marine Zoology at the 

Netherlands Centre for Biodiversity [55, 56]. To cleanse 
the specimens of loosely attached bacteria, they were 
initially rinsed with sterilized artificial seawater (ASW) 
[57] and then underwent surface sterilization using 70% 
alcohol. Following sterilization, the sponge samples were 
rapidly placed on dry ice, frozen, and subsequently stored 
at -20 °C.

Preparation of the bacterial culture media
Marine Nutrient Agar (MNA) was employed as a gen-
eral nutrient-rich medium to culture various heterotro-
phic marine bacteria. These bacteria were subsequently 
subcultured on ISP Agar medium following established 
protocols [58, 59]. Each medium was supplemented with 
NaCl at a concentration of 2% (w/v). To inhibit fungal 
growth, nystatin was added at a concentration of 25 µg/
ml, as described by Webster et al. [60]. The plates were 
then filled, inverted, and stored at 4 °C until further use.

Isolation and purification of the suspected bacterial 
strain(s)
A fresh sponge sample, approximately 1 cm³ in size, was 
thoroughly milled in a sterile mortar with 10 ml of ster-
ile artificial seawater (ASW) for two to three minutes. 
The resultant homogenate was transferred into a sterile 
15 ml test tube, creating a 10 − 1 dilution. A 100 µL aliquot 
from each dilution series was spread onto various isola-
tion media using a 10-fold dilution approach. The plates 
were then aerobically incubated for 1–2 weeks at 30  °C. 
Unique colony morphotypes were repeatedly selected 
and sub-cultured to achieve pure cultures, identified by 
their colony homogeneity.

The purified isolates were subsequently inoculated 
into ISP Medium 2 (ISP2). The liquid cultures were incu-
bated at 37 °C in a shaking incubator set at 160 rpm for 
48–72 h. Following the incubation period, cells were har-
vested by centrifugation at 6000 × g for 15 min.

Morphological and molecular identification of selected 
bacterial strain using 16 S rRNA gene
The Bacillus sp. isolate underwent further identification 
through 16S rRNA gene sequence analysis, following a 
series of morphological, microscopic, and biochemical 
characterizations. The polymerase chain reaction (PCR) 
amplification of the 16S rRNA gene was performed using 
specific primers: 27f (5’-​A​G​A​G​T​T​T​G​A​T​C​C​T​G​G​C​T​C​A​
G-3’) and 1492r (5’-​G​G​T​T​A​C​C​T​T​G​T​T​A​C​G​A​C​T​T-3’) 
[61]. The entire genome was amplified using a PCR sys-
tem cycler from Creacon (Holland, Inc.).

Extraction of bioactive secondary metabolites
Under optimal conditions, B. gottheilii MSB1 was cul-
tured in liquid ISP2 media at 28  °C with continuous 
shaking at 200  rpm for 48  h. The cultures were then 
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centrifuged at 6000 rpm for 15 min at 4 °C to separate the 
cells from the supernatant.

Subsequently, 1 L of the culture filtrate was subjected to 
liquid-liquid extraction using 250 ml each of ethyl acetate 
and n-butanol. The extractions were performed sequen-
tially, starting with ethyl acetate, followed by n-butanol.

Each organic phase was individually separated and 
dried over anhydrous sodium sulphate. The drying pro-
cess was carried out at room temperature (approximately 
25 °C) to prevent any degradation of the bioactive com-
pounds. The solvents were concentrated using a rotary 
evaporator (ROTAVAP, Büchi, Switzerland) conducted 
under reduced pressure at 40  °C. Each evaporation step 
took approximately 1  h to ensure complete removal of 
solvents.

The concentrated residues were then reconstituted in 
10 ml of methanol, achieving a concentration of 1.7 mg/
ml for the ethyl acetate extract and 1.5  mg/ml for the 
n-butanol extract. This resulted in a yield of crude pre-
cipitates of 17 mg from the ethyl acetate extraction and 
15 mg from the n-butanol extraction.

GC/MS Analysis of B. gottheilii MSB1 Extracts
The GC/MS apparatus was utilized to identify bio-
logically active compounds from the B. gottheilii MSB1 
isolate. This analysis was conducted using a Gas Chro-
matograph (Agilent 7690  A) and a Mass Spectrom-
eter (Agilent 5975 C with Triple Axis Detector) at the 
National Institute of Oceanography and Fisheries’ Alex-
andria Branch in Egypt. Specific conditions included: 
the mass spectrometer detector operating at 70 eV with 
a source temperature of 325  °C. The injector tempera-
ture was maintained at 300 °C, utilizing a splitless injec-
tion mode with an injection volume of 1 µl and a purge 
time of 2 min. Helium served as the carrier gas at a rate 
of 1.22  ml/min [62]. Separation was conducted on an 
HP-5MS 5% Phenyl Methyl Siloxane Column (Agilent 
19091 S-433) measuring 30 m x 250 μm x 0.25 μm. The 
oven temperature program began with holding at 90  °C 
for 1 min, followed by an increase of 8  °C/min to reach 
205  °C, held for another minute. It was then increased 

at 5 °C/min to 240 °C for one minute, and finally at 8 °C/
min attaining a peak temperature of 300  °C, which was 
maintained for 30 min. The total duration of the run was 
61.875 min. Following the run, the resulting mass spectra 
of the components were analyzed and compared.

Fungal isolation, purification and identification
Fungi were extracted from plant leaves and subsequently 
cultivated in a potato dextrose agar (PDA) medium, 
which was composed of 200 g of potato, 20 g of glucose, 
and distilled water for up to 1 L. The cultures were then 
incubated at 28  °C for a duration of 7 days. Total RNA 
was isolated from both treated and untreated fungal sam-
ples, with the treatment involving an n-butanol extract, 
following the protocol established by Chomczynski et al. 
[63].

Reverse transcription reaction-polymerase chain reaction 
(RT-PCR)
Complementary DNA (cDNA) was synthesized by 
reverse transcribing total RNA in a 20 µL reaction mix-
ture. The components included: 3 µL of total RNA, 5 µL 
of oligo(dT) primer (10 pmol/µL), 2.5 µL of dNTPs (10 
mM), 2.5 µL of buffer (10x), 0.3 µL of Reverse Transcrip-
tase, and 6.7 µL of sterile distilled water to achieve a final 
volume of 20 µL. The mixture was gently mixed and 
placed in a thermocycler. The amplification program con-
sisted of incubation at 37 °C for 1 h, followed by enzyme 
inactivation at 65 °C for 10 min, and then cooling to 4 °C. 
The resulting cDNA was stored at -20 °C for further use.

In this study, four primers (PR2, PR3, PR4, and PR5) 
were employed, as detailed in Table  1. The Real-Time 
PCR reaction mixture included: 10 µL of SYBR Green, 
1 µL of 10 pmol/µL forward primer, 1 µL of 10 pmol/µL 
reverse primer, 1 µL of cDNA (50 ng), and sterile distilled 
water to make up a total volume of 20 µL. The Real-Time 
PCR cycling conditions were: an initial denaturation 
at 95  °C for 10  min; followed by 45 cycles at 95  °C for 
10 s, annealing at 60 °C for 20 s, and extension at 72 °C 
for 20 s. Data acquisition occurred during the extension 
phase. This reaction was analyzed using the Rotor-Gene 
6000 system from Qiagen (USA).

The difference in quantification cycle values (ΔΔCT) 
between the reference and the target (treated) was calcu-
lated. The threshold cycle for each gene was determined 
using automated threshold analysis on the ABI system. 
Gene expression levels were quantified according to the 
method described by Livak et al. [64]. The CT value for 
each target gene was normalized to the CT value of the 
reference gene to obtain ΔCT(target).

Statistical analysis
In this study examining the antimicrobial and nemati-
cidal activities of B. gottheilii MSB1 extracts, we utilized 

Table 1  The specific primers of defense genes used in real-time 
PCR
Genes Primers Sequence 5`-----3` Reference
β-actin F:

R:
5`-​A​T​G​C​C​A​T​T​C​T​C​C​G​T​C​T​T​G​A​C​T​T​G-3`
5`-​G​A​A​C​C​T​A​A​G​C​C​A​C​G​A​T​A​C​C​A-3`

[65]

PR2 F:
R:

5`-​T​C​A​C​C​A​A​A​C​T​A​T​T​G​G​A​T​T​T​C​A​A-3`
5`-​G​A​C​T​C​A​A​T​T​T​T​T​G​A​C​T​T​C​T​T​A​A​T​C​C-3`

[66]

PR3 F:
R:

5`-​A​C​T​G​G​A​G​G​A​T​G​G​G​C​T​T​C​A​G​C​A-3`
5`-​T​G​G​A​T​G​G​G​G​C​C​T​C​G​T​C​C​G​A​A-3`

[67]

PR4 F:
R:

5`-​G​A​C​A​A​C​A​A​T​G​C​G​G​T​C​G​T​C​A​A​G​G-3`
5`-​A​G​C​A​T​G​T​T​T​C​T​G​G​A​A​T​C​A​G​G​C​T​G-3`

[68]

PR5 F:
R:

5`-​A​T​G​G​G​G​T​A​A​A​C​C​A​C​C​A​A​A​C​A-3`
5`-​G​T​T​A​G​T​T​G​G​G​C​C​G​A​A​A​G​A​C​A-3`

[66]
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statistical approaches to substantiate our findings and 
ensure scientific rigor. Specifically, the inhibition zones 
and nematicidal mortality percentages were subjected 
to one-way analysis of variance (ANOVA) to detect sig-
nificant differences among treatments. This approach 
enabled us to assess the relative effectiveness of each 
extract type (n-butanol, n-hexane, and ethyl acetate) 
against plant pathogens and nematodes. When ANOVA 
indicated significant differences at a confidence level of 
p < 0.05, Tukey’s Honest Significant Difference (HSD) test 
was subsequently applied. This post-hoc analysis allowed 
us to determine pairwise differences among group 
means, providing a clearer understanding of the superior 
efficacy of particular extracts over others.

Additionally, statistical metrics such as least significant 
difference (LSD) and confidence intervals were calculated 
to enhance the reliability of our findings, offering insights 
into the precision and consistency of the observed effects. 
Statistical analyses were conducted using SPSS software 
(version 25), facilitating a robust examination of the data-
set and ensuring data integrity. The use of these statisti-
cal tools enabled us to critically evaluate the potential of 
B. gottheilii MSB1 extracts as viable alternatives to con-
ventional chemical pesticides, grounding our claims in 
quantitative evidence and supporting the exploration of 
environmentally friendly biocontrol solutions.

Results
The purpose of this study was to assess the ability of 
marine bacteria associated with sponges to produce anti-
fungal and nematocidal compounds.

Phylogenetic analysis of the selected bacillus sp. isolate
The 16  S rRNA gene sequences were used to iden-
tify the chosen isolate. Nucleotide sequence analy-
sis was conducted using the BlastN tool on the NCBI 
server. The Bacillus sp. isolate, identified as B. gottheilii 
MSB1, has a sequence length of 1369 bp (Figs: 1, 2 and 
3). The sequence of the identified bacterial strain has 
been submitted to GenBank with the accession number 
KU199821.

GC/MS analysis of B. gottheilii MSB1 ethyl acetate extract
Using the GC/MS technique, four different chemicals 
were identified in the ethyl acetate extract of B. gottheilii 
MSB1 (Table 2; Fig. 3). The identified compounds include 
3,5-Di-tert-butylphenol (20.4%), Ethyl 14-methyl-hexa-
decanoate (4.99%), Phthalic acid isobutyl octadecyl ester 
(4.83%), and Ethyl 12-oxododecanoate (4.65%).

Figure 3. B. gottheilii MSB1 cells by scanning electron 
microscope (SEM).

GC/MS analysis of B. gottheilii MSB1 n-butanol extract
The chemical composition of the n-butanol extract from 
B. gottheilii MSB1 is detailed in Table 3. Using GC/MS, 
seventeen components were identified in the n-buta-
nol extract. The predominant compounds were Ben-
zeneacetamide (70.0%), 2-Hydroxy-1-[(palmitoyloxy)
methyl]ethyl palmitate (36.4%), 3-Methylbutanamide 
(23.1%), 2,6-Di-tert-butylphenol (9.23%), Ethyl cis, 
cis-9,12-octadecadienoate (11.7%), (7Z)-7-Nonen-
amide (9.27%), 2-Methylpropyl hexadecanoate (6.68%), 
2-Propyl-1-heptanol (6.03%), 1-Hexadecanol (5.08%), 
3,3-Dimethyl-6-(methylsulfanyl)-8-(4-morpholinyl)-3,4-
dihydro-1  H-thiopyrano[3,4-c] pyridine-5-carbonitrile 

Fig. 1  Agarose gel electrophoresis of the amplified region of the isolate Bacillus sp. specific genes with approx. 1369 bp. The full, uncropped gel is shown 
in the supplementary file, Fig. S1
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(4.65%), (5E)-5-Icosene (3.51%), and (9E)-9-Hexadecen-
1-ol (3.19%).

While this analysis successfully identifies several com-
pounds within the extract, it remains essential to delve 
deeper into how these compounds exert their biologi-
cal effects. Future research should prioritize elucidating 
the underlying mechanisms by which these compounds 
may disrupt fungal or bacterial growth. Understanding 
these mechanisms will significantly enhance the study’s 
scientific contribution and provide insight into potential 
applications for these bioactive compounds in medical or 
agricultural fields.

Antibacterial and nematicidal activity of B. gottheilii MSB1 
extracts
The antibacterial activity of n-hexane and ethyl acetate 
extracts from B. gottheilii MSB1 showed no significant 
impact against plant pathogenic bacteria such as Erwinia 
carotovora and Ralstonia solanacearum. However, the 
n-butanol extract demonstrated positive effects, inhib-
iting these bacteria with inhibition zones of 17 mm and 
19  mm, respectively. Erwinia carotovora causes disease 
in a wide variety of agricultural and horticultural crops, 
including carrots, cabbage, cucumbers, onions, toma-
toes, lettuce, and ornamental plants such as iris. Ralsto-
nia solanacearum is responsible for causing brown (wilt) 
potato rot. These pathogens continuously attack potatoes 

and other vegetable crops both in fields and in storage, 
posing significant agricultural concerns (Table 4).

In addition, ethyl acetate and n-butanol extracts exhib-
ited in-vitro nematicidal activity against the root-knot 
nematode (Meloidogyne incognita), which causes seri-
ous diseases in vegetable crops. The ethyl acetate extract 
showed a 90.5% reduction in nematode activity after 12 h 
and 100% reduction after 24  h and 7 days. The n-buta-
nol extract showed an 85.7% reduction after 12  h and 
24 h, and a 90.5% reduction after 7 days. In contrast, the 
n-hexane extract showed no significant effects (Table 5). 
We employed a negative control consisting of only the 
testing medium without any extracts to establish a base-
line for natural nematode mortality, which remained 
consistently low (4.2% mortality across all time points), 
confirming that the observed reductions were due to the 
active compounds in the extracts.

Antifungal activity of B. gottheilii MSB1 n-butanol extract
The in vitro antifungal activity of the n-butanol extract 
against the plant pathogenic fungi Fusarium oxyspo-
rum and Alternaria alternata is presented in Table  6, 
with results expressed as IC50 values. Most of the tested 
compounds showed inhibitory effects against the fungi. 
Concerning Fusarium oxysporum, the extract exhib-
ited significantly potent antifungal activity with an IC50 
of 0.086  mg/L. Similarly, for Alternaria alternata, the 

Fig. 2  phylogenetic tree for B. gottheilii MSB1 according to specific gene sequencing data
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extract demonstrated an IC50 of 0.061 mg/L (Figs; 4 and 
5).

Quantitative real-time PCR (QRT-PCR)
Real-time PCR was employed to quantify the relative 
mRNA levels of four related protein genes in two plant 
pathogenic fungi, Alternaria alternata and Fusarium 
oxysporium, treated with extract No. 3. The analyzed 
defense genes include β-1, 3-glucanases (PR2), PR3, PR4, 
and thaumatin-like proteins (PR5). Results were normal-
ized using the elongation factor β-actin gene as a refer-
ence or housekeeping gene. The quantitative analysis 

revealed that PR4 expression had the highest level with 
A. alternata (3.58) at times 8 and 12, respectively. Con-
versely, the lowest values (12) were observed with A. 
alternata for PR2. Moreover, for F. oxysporium, the high-
est expression levels were noted for PR5, PR3 and PR2 
when treated with concentrate 4, whereas the lowest 
expression (PR4) was detected when treated with con-
centrate 12 (Figs: 6 and 7).

Table 2  GC/MS analysis of ethyl acetate extract of BGMSB1
Peak # Compound Rt (min) Molecular Formula Molecular Weight (g/ mol)
1 2,4-Di-tert-butylphenol 13.88 C14H22O 206.32
2 Ethyl 14-methyl hexadecanoate 19.67 C19H38O2 298.50
3 Phthalic acid, isobutyl octadecyl ester 20.08 C30H50O4 474.72
4 Ethyl 12-oxododecanoate 22.14 C14H26O3 242.35

Fig. 3  B. gottheilii MSB1 cells by scanning electron microscope (SEM)
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Discussion
Plant diseases caused by various microorganisms, includ-
ing viruses, bacteria, fungi, protozoa, and nematodes, 

significantly affect agricultural practices, resulting in 
substantial crop losses [69, 70]. Fungal pathogens are a 
primary cause of plant diseases, infecting a majority of 
plants. Agrochemicals are vital in plant disease manage-
ment to achieve a sustainable and productive agricultural 
system [71, 72]. However, the extensive use of chemi-
cals has detrimental effects on human health, ecosystem 
functionality, and agricultural sustainability. Sustainable 
agriculture can be achieved by reducing or eliminating 
the use of fertilizers and agrochemicals, thereby mini-
mizing environmental impact [73, 74].

Table 3  GC/MS analysis of B. Gottheilii MSB1 n-butanol extract
Bacillus Compound Rt (min) Molecular Formula Molecular 

Weight 
(g/ mol)

1 3-Methylbutanamide 5.64 C5H11NO 101.15
2 2-Propyl-1-heptanol 6.10 C10H22O 158.28
3 4-Fluorophenyl butyrate 6.60 C10H11FO2 182.19
4 (7Z)-7-Nonenamide 7.33 C9H17NO 155.24
5 cis-3-Dodecene 8.33 C12H24 168.32
6 1-Hexadecanol 11.78 C16H34O 242.44
7 Benzeneacetamide 12.42 C8H9NO 135.16
8 2,6-Di-tert-butylphenol 13.94 C14H22O 206.32
9 (9E)-9-Hexadecen-1-ol 15.13 C16H32O 240.42
10 (5E)-5-Icosene 18.52 C20H40 280.53
11 4-Amino-6-hydroxy-2-methyl-5-nitrosopyrimidine 21.50 C5H6N4O2 154.13
12 Butyl 13-methyltetradecanoate 22.12 C19H38O2 298.50
13 2-Hydroxy-1-[(palmitoyloxy)methyl] ethyl palmitate 25.05 C35H68O5 568.91
14 2-methylpropyl hexadecanoate 25.72 C20H40O2 312.53
15 3,7,11-Trimethyl-1-dodecanol 25.84 C15H32O 228.41
16 3,3-Dimethyl-6-(methylsulfanyl)-8-(4-morpholinyl)-3,4-dihydro-1 H-

thiopyrano[3,4-c]pyridine-5-carbonitrile
26.01 C16H21N3OS2 335.49

17 Ethyl cis, cis-9,12-octadecadienoate 28.63 C20H36O2 308.50

Table 4  The antibacterial activity for plant pathogenic bacteria
BGMSB1 extracts Diameter of inhibition zone (mm)

Plant pathogenic isolate
Erwinia Carotovora Ralstonia solanacearum

n-Hexane - -
Ethyl acetate - -
n-Butanol 17 19

Table 5  In-vitro nematicidal activity (Meloidogyne incognita), data are means of 3 replicates
No. Treatment Con. (J2 mortality %)

12 h 24 h 7 days

L R (%) L R (%) L R (%)
1 Negative control (MI) - 4.2a - 4.2a - 4.2a -
2 MI + Nemaphose 40% (Positive_control) - 0.6b 85.7 0.2bc 95.2 0.00b 100
3 MI + H extract - 0.4b - 0.4b - 0.4b -
4 MI + E extract S 0.4b 90.5 0.0c 100 0.0b 100
5 MI + B extract S 0.6b 85.7 0.6b 85.7 0.4b 90.5
S: standard. a, b,cMeans with the same letters (s), in each column, are not significantly different at (p ≤ 0.05). Con.: Concentration; J2: Second-stage juvenile; L: Lethality 
(percentage of J2 mortality); R (%): Reduction percentage; MI: Meloidogyne incognita; H extract: Herbal extract; E extract: Extract of compound ‘E’; B extract: Extract 
of compound ‘B’

Table 6  The in vitro antifungal activity of B. Gottheilii MSB1 n-butanol extract against F. Oxysporum AND A. Alternaria by Mycelia radial 
growth technique
Formulations EC50

1 (mg/L) 95% confidence limits Slope2 ± SE Intercept3 ± SE (χ2)4

Lower Upper
Alternaria 0.830 0.113 1.759 1.48 ± 0.353 0.120 ± 0.329 1.77
Fusarium 1.761 0.818 2.625 2.021 ± 0.348 -0.497 ± 0.31 0.931
1The concentration causing 50% mycelia growth inhibition. 2Slope of the concentration-inhibition regression line ± standard error.3Intercept of the regression 
line ± standard error.4Chi square value
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Despite considerable efforts in managing plant patho-
gens, there is still significant potential to discover stable 
solutions. Various agronomical, biochemical, chemical, 
cultural, and biotechnological approaches have been 
employed to address plant pathogen issues, each with 
varying degrees of success. The use of bioactive sec-
ondary metabolites produced by biocontrol agents has 
emerged as a promising, eco-friendly approach for man-
aging plant pathogens [75].

Sponge-associated bacteria and fungi are known to 
produce antimicrobial compounds with unique biologi-
cally important properties [76]. The majority of these 
antimicrobial compounds are produced by bacteria 
(90%), with fungi accounting for approximately 10% [77]. 
The interactions between sponges and bacteria in the 
marine environment are not well understood, but symbi-
otic relationships are generally believed to exist between 
sponges and microorganisms [78, 79].

Symbiotic functions attributed to microbial flora 
include nutrient acquisition, stabilization of the sponge 
skeleton, processing of metabolic waste, and second-
ary metabolite production [80]. Some bacteria are also 

thought to chemically defend their host against microbial 
infection [81]. Our study has confirmed that Bacillus sp. 
is predominantly represented, and its occurrence in the 
marine environment is well documented [82].

Sponge-associated Bacillus species, such as Bacillus 
cereus, Bacillus flexus, Bacillus pumilus, Bacillus licheni-
formis, Bacillus megaterium, Bacillus amyloliquefaciens, 
and Bacillus subtilis, offer significant potential as sources 
of antimicrobial substances [37, 83–92]. Numerous 
microbial isolates from these species have been reported 
to inhibit pathogenic reference strains in vitro and syn-
thesize active substances effective against various infec-
tious agents [39, 93–95]. These Bacillus species produce a 
wide array of pharmacologically and agriculturally active 
compounds and are recognized as industrially important 
microorganisms for their ability to generate numerous 
novel secondary metabolites [96, 97].

Optimizing culture conditions is essential to achieve 
high yields of these metabolites. Therefore, an attempt 
was made to optimize nutritional sources, including 
carbon, nitrogen, and minerals, as well as environmen-
tal factors such as time, pH, and temperature, for the 

Fig. 4  The antifungal activity of the B. gottheilii MSB1 n-butanol extract (from left to right, 0, 4, 8, 12and 15 mg/L respectively) against F. oxysporum
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Fig. 6  Histogram of the quantitative estimation for PR2, PR3, PR4 and PR5 gene expressions in Alternaria treated with B. gottheilii MSB1 n-butanol extract

 

Fig. 5  The antifungal activity of the B. gottheilii MSB1 n-butanol extract (from left to right, 0, 4, 8, 12 and 15 mg/L respectively) against A. Alternaria
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production of antimicrobial metabolites by Bacillus 
strains [98, 99]. Competition among microbes for space 
and nutrients in the marine environment serves as a 
powerful selection pressure, encouraging marine micro-
organisms to produce natural products with significant 
agricultural, medical, and industrial applications [100].

The marine environment remains a critical area of 
research for scientists globally. The extreme conditions 
of temperature and salinity in marine ecosystems provide 
a unique and largely untapped microbiome [101]. These 
unique environmental conditions offer opportunities for 
the exploration of new microbes and their secondary 
metabolites [102].

The marine sponge Hyrtios erecta was found to harbor 
potent bacterial strains, particularly B. gottheilii MSB1, 
when screened against various pathogenic bacteria and 
fungi. The presence of antimicrobial activity was con-
firmed [103, 104]. Symbiotic and endophytic microorgan-
isms have been identified as promising natural sources of 
antimicrobial and biocontrol agents (herbicides, pesti-
cides), offering a viable approach to reducing the use of 
agrochemicals [105, 106].

GC/MS analysis of ethyl acetate and n-butanol extracts 
of B. gottheilii MSB1 revealed a diverse array of bioac-
tive secondary metabolites with antimicrobial properties, 
which likely contribute to its strong antagonistic activity 
against Fusarium oxysporum and Alternaria alternata 
[107, 108]. Additionally, these extracts exhibited signifi-
cant in-vitro nematicidal activity against the root-knot 
nematode (Meloidogyne incognita), with reduction rates 
of 90.5% after 12  h and 100% after 24  h and 7 days for 
ethyl acetate, and 85.7% after 12 and 24 h, and 90.5% after 

7 days for n-butanol, while the n-hexane extract was inef-
fective [7, 109].

Among the potent identified bioactive secondary 
metabolites, the volatile phenolic compounds 2,4-ditert-
butylphenol and 3,5-ditert-butylphenol displayed sig-
nificant toxicity against a wide range of organisms, 
demonstrating antimicrobial, insecticidal, and nema-
ticidal activities [110, 111]. The fatty acid derivatives, 
including butyl 13-methyltetradecanoate, 2-hydroxy-
1-[(palmitoyloxy)methyl]ethyl palmitate, and oth-
ers, produced by marine B. gottheilii MSB1, have been 
reported to exhibit antibacterial and antifungal prop-
erties [112, 113]. Other bioactive compounds such as 
4-amino-6-hydroxy-2-methyl-5-nitrosopyrimidine, 
3,3-dimethyl-6-(methylsulfanyl)-8-(4-morpholinyl)-3,4-
dihydro-1  H-thiopyrano[3,4-c]pyridine-5-carbonitrile, 
and others demonstrated mild anxiolytic, antifungal, 
antibacterial, antioxidant, and antimalarial activities 
[114, 115].

The modes of action of many antimicrobials are com-
plex and may affect multiple targets. The phenomenon 
of membrane bleeding has been observed with several 
antimicrobial agents [116]. For instance, phenolic and 
flavonoid compounds exert their effects through vari-
ous mechanisms, including membrane disruption [117], 
protein binding, inhibition of protein synthesis, enzyme 
inhibition, and production of cell wall complexes [118]. 
Alkaloids may inhibit critical enzymes or act as DNA-
intercalating agents [119]. Lysozymes affect bacterial cell 
walls and membranes, leading to membrane disruption, 
release of intracellular contents, and subsequent bacterial 
cell death [120].

Fig. 7  Histogram of the quantitative estimation for PR2, PR3, PR4 and PR5 gene expressions in Alternaria treated with B. gottheilii MSB1 n-butanol extract
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Rongai et al. [121]. reported that certain plant groups, 
including Asteraceae, Oleaceae, and Lamiaceae, exhibit 
fungicidal action against Alternaria and Fusarium spe-
cies. Chandel and Kumar also confirmed that the extract 
from Calliandra callothyrsus inhibits the growth of Alter-
naria alternata, Alternaria solani, Phoma sp., Fusarium 
sp., and Aspergillus sp., and promotes pea germination.

According to Daradka et al. [122], plants analyzed 
belonged to several families. Three dosages of plant 
extracts (10, 50, and 100  mg/ml) were tested against A. 
alternata and F. oxysporum by determining the inhibition 
zone of fungal mycelial growth using the disc-diffusion 
method on Potato Dextrose Agar (PDA), yielding sig-
nificant results. The antifungal activity of plant extracts 
(50–100  mg/mL) against A. alternata and F. solani was 
assessed by monitoring mycelium radial growth and cal-
culating the minimum inhibitory concentration (MIC) 
according to Lira-De et al. [123].

In the present study, we report the first isolation of 
B.gottheilii MSB1 from a marine sponge. Previously, 
this bacterium was isolated from mangrove sediment in 
Peninsular Malaysia [124]. B. gottheilii MSB1 is a Gram-
positive, rod-shaped, motile, strictly aerobic, endo-
spore-forming bacterium with potential applications in 
pharmaceutical production [125]. We investigated the 
antimicrobial and nematicidal activities of B. gottheilii 
MSB1 extracts in vitro, as well as its biocontrol efficacy 
against Fusarium oxysporum, Alternaria alternata, and 
Meloidogyne incognita under laboratory conditions. The 
results revealed that the extracts exhibit significant anti-
microbial and nematicidal effects, which are consistent 
with previous studies [29, 126].

In considering the promising antimicrobial and nema-
ticidal properties of B. gottheilii MSB1, it is essential to 
explore the broader implications of these findings, par-
ticularly in sustainable agriculture and pest management. 
The potential reduction in chemical pesticide use offers 
significant environmental and health benefits, align-
ing with global efforts to reduce chemical footprints in 
agricultural practices. However, the pathway to practi-
cal application is not without challenges. Implement-
ing these biocontrol strategies on a large scale requires 
a thorough analysis of economic feasibility, logistical 
considerations, and farmer adoption hurdles. Factors 
such as production costs, delivery mechanisms, com-
patibility with existing agricultural systems, and regula-
tory approvals must be addressed to ensure that these 
biological solutions are not only effective but also acces-
sible and attractive to farmers worldwide. Furthermore, 
understanding the long-term impact on ecosystems and 
crop yield stability will be crucial to guarantee that such 
innovations contribute positively to sustainable agricul-
tural landscapes [127–130]. By engaging in a compre-
hensive evaluation of these elements, stakeholders can 

better facilitate the integration of B. gottheilii MSB1 into 
real-world agricultural settings, thereby maximizing its 
potential benefits .

This study demonstrates the potential of B. gottheilii 
MSB1, isolated from the marine sponge Hyrtios erecta, 
as a source of bioactive secondary metabolites with sig-
nificant antimicrobial and nematicidal properties. These 
findings support the viability of marine microorganisms 
as eco-friendly alternatives for managing plant patho-
gens, reducing agrochemical use, and enhancing sustain-
able agriculture. The identified bioactive compounds, 
such as volatile phenolic compounds and fatty acid deriv-
atives, show promising applications in agriculture and 
pharmaceuticals.

Nonetheless, the study has limitations; the activity of 
B. gottheilii MSB1 could vary with environmental condi-
tions, which were not fully examined here. Furthermore, 
while several bioactive compounds were identified, the 
specific mechanisms by which they disrupt fungal or 
bacterial growth remain unclear. Future research should 
focus on elucidating these mechanisms to maximize the 
scientific contribution and potential applications of these 
compounds. Challenges such as large-scale production 
and purification also need addressing to facilitate practi-
cal use, ensuring B. gottheilii MSB1’s efficacy as a biocon-
trol agent across different environments.

Conclusions
This study confirms that Bacillus species, including B. 
gottheilii MSB1, exhibit potential as agents against plant 
pathogens, such as fungi and nematodes, suggesting 
their possible role as producers of antibacterial, antifun-
gal, nematicidal, and biocontrol agents in agricultural 
contexts. While these findings highlight the potential of 
Bacillus species in integrated pest management strate-
gies, it is important to acknowledge that the current 
research primarily reflects laboratory results. The trans-
lation of these findings to real-world agricultural appli-
cations requires further steps, including comprehensive 
field trials and toxicity assessments, to validate their effi-
cacy and safety on a large scale. Additionally, the study 
does not yet explore how these applications may directly 
contribute to environmental sustainability and the 
United Nations’ Sustainable Development Goals (SDGs). 
Therefore, while promising, further research is essential 
to establish the practical, sustainable use of B. gottheilii 
MSB1 extracts in agriculture.
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