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Abstract
Based on our previous findings that salicylic acid and jasmonic acid increased Nostoc flagelliforme polysaccharide 
yield by regulating intracellular nitric oxide (NO) levels, the mechanism through which NO affects polysaccharide 
biosynthesis in Nostoc flagelliforme was explored from the perspective of S-nitrosylation (SNO). The addition of NO 
donor and scavenger showed that intracellular NO had a significant positive effect on the polysaccharide yield of 
N. flagelliforme. To explore the mechanism, we investigated the relationship between NO levels and the activity of 
several key enzymes involved in polysaccharide biosynthesis, including fructose 1,6-bisphosphate aldolase (FBA), 
glucokinase (GK), glucose 6-phosphate dehydrogenase (G6PDH), mitochondrial isocitrate dehydrogenase (ICDH), 
and UDP-glucose dehydrogenase (UGDH). The enzymatic activities of G6PDH, ICDH, and UGDH were shown to 
be significantly correlated with the shifts in intracellular NO levels. For further validation, G6PDH, ICDH, and UGDH 
were heterologously expressed in Escherichia coli and purified via Ni+-NAT affinity chromatography, and subjected 
to a biotin switch assay and western blot analysis, which revealed that UGDH and G6PDH were susceptible to SNO. 
Furthermore, mass spectrometry analysis of proteins treated with S-nitrosoglutathione (GSNO) identified the SNO 
modification sites for UGDH and G6PDH as cysteine 423 and cysteine 249, respectively. These findings suggest 
that NO modulates polysaccharide biosynthesis in N. flagelliforme through SNO of UGDH and G6PDH. This reveals a 
potential mechanism through which NO promotes polysaccharide synthesis in N. flagelliforme, while also providing 
a new strategy for improving the industrial production of polysaccharides.

Keywords Nitric oxide, Nostoc flagelliforme, Polysaccharides, S-nitrosylation

Nitric oxide mediates positive regulation 
of Nostoc flagelliforme polysaccharide yield via 
potential S-nitrosylation of G6PDH and UGDH
Meng-yuan Li1, Yan-ru Li1, Cheng-feng Han1, Jie Zhang1, Rui-ying Zhu1, Yan Zhang1, Jian Li1, Shi-ru Jia1 and  
Pei-pei Han1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12896-024-00884-z&domain=pdf&date_stamp=2024-8-22


Page 2 of 10Li et al. BMC Biotechnology           (2024) 24:58 

Introduction
Polysaccharides are secondary metabolites that play a 
crucial role in the survival of microorganisms [1]. Nostoc 
flagelliforme is a terrestrial cyanobacterium that secretes 
abundant extracellular polysaccharides to protect itself 
from external stresses [2, 3]. In addition, studies have 
shown that N. flagelliforme polysaccharides exhibit a mul-
titude of physiological effects, mainly including immuno-
modulation, anti-aging, blood pressure reduction, lipid 
level modulation, antitumor, antiviral, radioprotective, 
antioxidant, and anti-inflammatory activities [4]. Nev-
ertheless, the limited yield of polysaccharides remains a 
significant challenge, hindering the wider application of 
these compounds in the field of biomedicine [5, 6]. Many 
studies aiming to improve the yield of polysaccharides in 
N. flagelliforme investigated the effect of various stress 
conditions [2, 7, 8]. A previous study found that salicylic 
acid (SA) and jasmonic acid (JA) significantly increased 
the accumulation of polysaccharides in N. flagelliforme 
by increasing the intracellular nitric oxide (NO) levels, 
but the mechanism of action was not clear [9].

NO is known to mediate a variety of physiological and 
pathological processes, including cell proliferation, dif-
ferentiation, and inflammation. Moreover, studies have 
shown that NO can directly promote the synthesis of 
polysaccharides [9–11]. Liu et al. found that the addition 
of exogenous NO donors significantly increased the pro-
duction of extracellular and intracellular polysaccharides 
during the deep fermentation process of Ganoderma 
lucidum [12]. However, there is still no comprehensive 
analysis of glycolytic intermediates and the potential link 
between NO signaling and polysaccharide biosynthesis.

Protein S-nitrosylation (SNO) is a reversible post-
translational modification that has emerged as an impor-
tant mechanism capable of finely regulating protein 
activity and functionality [13]. SNO proceeds via the 
addition of a nitroso group to the reactive sulfhydryl 
group of cysteine to form S-nitrosothiols for NO-medi-
ated signaling. Extensive studies have also shown that 
SNO is capable of storing, transporting, and releasing 
NO in organisms, which plays a crucial role in the physi-
ological and metabolic regulation of cells [14–17]. This 
modification allows cells to protect themselves against 
oxidative stress, while also mediating vascular tone regu-
lation, immune regulation and anti-inflammatory effects 
through various signaling pathways [13, 18]. Here, we 
explored the mechanism through which intracellular NO 
affects polysaccharide biosynthesis in N. flagelliforme 
from the perspective of SNO.

A comparison of the effects of the respective addi-
tion of NO donors and scavengers on intracellular NO 
content and polysaccharide yield showed that intracel-
lular NO levels had significant positive effects on the 
polysaccharide yield of N. flagelliforme. To explore the 

underlying mechanism, enzymes related to the poly-
saccharide synthesis pathway of N. flagelliforme were 
analyzed. Previous studies on the effects of culture condi-
tions on polysaccharide yield and polysaccharide synthe-
sis activity in N. flagelliforme showed that UDP-glucose 
dehydrogenase (UGDH) is the key enzyme regulating 
the polysaccharide yield [2]. Furthermore, it was found 
that SA and JA had a significant effect on the enzymatic 
activities of fructose 1,6-bisphosphate aldolase (FBA), 
glucokinase (GK), glucose 6-phosphate dehydrogenase 
(G6PDH), and mitochondrial isocitrate dehydrogenase 
(ICDH). Crucially, it was also shown that SA and JA 
could also increase the polysaccharide yield by regulat-
ing NO levels [9]. Therefore, FBA, GK, G6PDH, ICDH 
and UGDH were selected for SNO analysis, the latter 
three of which were screened out based on the relation-
ship between their enzymatic activities and intracellu-
lar NO levels. Subsequently, G6PDH, ICDH and UGDH 
were heterologously expressed and purified, after which 
the SNO levels of the three enzymes were determined 
using a biotin switch assay and western blot analysis. In 
addition, the modification sites of S-nitrosoglutathione 
(GSNO) modified proteins were further determined by 
mass spectrometry. These findings reveal the mechanism 
through which NO regulates polysaccharide biosynthesis 
in N. flagelliforme. This study therefore provides new per-
spectives and research directions for further exploring 
the mechanism of polysaccharide biosynthesis.

Materials and methods
Materials and reagents
The N. flagelliforme TCCC11757 used in this study was 
provided by the Tianjin Key Laboratory of Industrial 
Microbiology (Tianjin, China).

Carboxy-PTIO (C-PTIO), sodium nitroprusside (SNP), 
isopropyl β-D-thiogalactoside (IPTG), proteinase inhibi-
tor (PMSF), BCA protein assay kit, and GSNO were pur-
chased from Solarbio (Beijing, China). The fluorescent 
probe DAF-FM DA NO was purchased as part of a kit 
from Beyotime (Shanghai, China). Kaumas brilliant blue, 
bromophenol blue, sodium ascorbate, and glutathione 
were purchased from Maclean (Shanghai, China). Biotin-
HPDP was purchased from Thermo Fisher (Massachu-
setts, USA). Anti-biotin rabbit IgG was purchased from 
Cell Signaling Technology (Boston, USA). Goat anti-
rabbit IgG was purchased from Anjoron Bio Co (Beijing, 
China). Unless specified otherwise, all chemicals were of 
analytical grade.

Cell culture and determination of intracellular NO content, 
polysaccharide content, and enzyme activity
N. flagelliforme was cultured in BG-11 medium (BG110 
with 1.5  g/L NaNO3 as the nitrogen source) [19]. The 
cells were cultured in 500 mL shake flasks containing 200 
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mL of BG-11 medium under continuous illumination of 
1000 lx at 25℃ for 16 days. The initial cell suspension in 
the flask was adjusted to an optical density at 750 nm of 
approximately 1.0 as a seed suspension [20]. The effects 
of different sources of NO on the enzyme activity were 
screened out according to a previously published method 
[9]. On the sixth day of cultivation, C-PTIO (80 µmol/L) 
or SNP (125 µmol/L) was added, while no inducer was 
added in the control group.

The intracellular NO content was determined using the 
fluorescent probe DAF-FM DA NO assay kit. The cells 
from 1 mL of culture broth were collected by centrifuga-
tion at 4000  rpm and 4  °C for 10  min. Then, 200 µL of 
5 µM DAF-FMDA was added and incubated at 37 °C for 
40  min in the dark. Subsequently, the DAF-FMDA that 
did not enter the cells was removed by washing three 
times with PBS. Then, the cells were resuspended in 200 
µL of PBS and the fluorescence intensity was measured 
(excitation wavelength 495  nm, emission wavelength 
515  nm). Polysaccharide content was determined using 
the phenol sulfate method [21]. The polysaccharide sam-
ple, distilled water, 6% phenol and concentrated sulfuric 
acid were shaken in a vortex mixer at a volume ratio of 
1:1:1:5. After standing for 30  min, the absorbance was 
measured at 490 nm. The values were compared to a stan-
dard curve to calculate the polysaccharide concentration.

To determine the activity of enzymes related to poly-
saccharide biosynthesis in N. flagelliforme, a crude 
enzyme solution was obtained according to a previously 
described method [22]. To obtain the crude enzyme solu-
tion, on the day of the end of the N. flagelliforme cell cul-
ture cycle, the cyanobacteria were collected, disrupted, 
and centrifuged to collect the supernatant. The protein 
concentration was determined using the BCA protein 
kit. Then, the enzyme activity was measured using a UV 
spectrophotometer as described before [23]. One unit 
of enzyme activity was defined as the amount of protein 
that generates 1 µmol of NADH per minute. The enzyme 
activity was calculated using the formula:

 
1U

(
µ mol
min

)
=

∆A

∆ t
× V1 × dilution factor

V2 × ε × d× Cpr

where V1 is the total volume of the reaction system (0.25 
mL), V2 is the volume of the enzyme solution added (0.03 
mL), ε is the molar extinction coefficient (6.22 × 106 mL/
mol/cm for NADH), d is the light path (0.5 cm), ∆t is the 
reaction time, and Cpr is the protein concentration (mg/
mL).

Construction of recombinant plasmids, protein expression 
and purification
The coding sequences of the icdh, g6pdh, and ugdh genes 
were amplified from the genome of N. flagelliforme 

CCNUN1 using specific primers (Supplemental Table 
1), after which the purified PCR fragment was digested 
cloned into pET-28a (+) [24]. Recombinant plasmids were 
transferred into competent cells of E. coli BL21 (DE3). 
Protein expression was induced by adding IPTG [25]. The 
cells were collected by centrifugation at 8000  rpm and 
4  °C for 15 min, suspended in disruption buffer supple-
mented with lysozyme and the protein inhibitor PMSF, 
and disrupted by sonication. The supernatant contain-
ing crude protein was collected. The crude protein was 
loaded onto a Ni+-NAT agarose column (Qiagen, Shang-
hai, China) and eluted with different concentrations of 
imidazole. Aliquots of protein fractions were analyzed by 
SDS-PAGE, and selected fractions were pooled and con-
centrated using Amicon ultra centrifugal filter devices 
(Millipore, Massachusetts, USA.) [26]. Purified protein 
was stored at -20℃ after lyophilization. The protein con-
centration was determined using a BCA protein assay kit.

SNO detection of ICHD, G6PDH and UGDH
SNO was detected using a previously published in 
vitro biotin switch assay [27, 28]. GSH and GSNO were 
respectively added into the protein sample in the dark 
to a final concentration of 200 µmol/L (GSH treatment 
was used as the negative control, and two replicates were 
prepared for GSNO treatment). The above samples were 
put into a thermoblock and reacted at 23℃ and 800 rpm 
for 30  min. Then, protein samples were resuspended in 
200 µL blocking buffer, placed in a thermoblock, and 
reacted at 50℃ and 1200 rpm for 40 min. Proteins were 
collected by adding 10 µL (500 mmol/L) sodium ascor-
bate and 10 µL (4 mmol/L) biotin HPDP (including one 
sample without sodium ascorbate but with 10 µL HENS 
buffer as another negative control for GSNO treated 
samples) and incubated for another 1  h at 23  °C and 
800 rpm. Biotin-HPDP was removed by the acetone pre-
cipitation method after biotinylation. The protein was 
re-suspended in the HENS buffer, and an SDS loading 
buffer without a reducing agent was added. An aliquot of 
the samples was subjected to western blot analysis [29]. 
The SDS-PAGE protein bands were electroblotted to a 
nitrocellulose membrane at 220 V and 65 mA for 2 h. The 
membrane was then incubated with a rabbit anti-biotin 
primary antibody (1/1000) overnight at 4℃, followed by 
incubation with the secondary antibody (1/5000) for 1 h 
[30]. The specific protein bands were visualized using 
an Odyssey Infrared Imaging System (Gene Company 
Limited).

Detection of SNO modification sites in UGDH and G6PDH
The appropriate protein band was hydrolyzed with chy-
motrypsin and trypsin, and the peptide fragments were 
desalted using a self-filling desalination column. Then, 
the solvent was volatilized in a vacuum centrifuge at 
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45℃. Subsequently, matrix-assisted laser desorption 
ionization mass spectrometry (MALDI-MS) was used 
to detect the SNO sites of the proteins. The LC-MS/MS 
conditions are detailed in the supplementary materials. 
Lastly, bionic was used to analyze and retrieve informa-
tion from the original target protein database. Param-
eters were set as follows: the protein modifications were 
set to aminomethylation (C) (variable), acetyl (protein 
N-term), oxidation (M) (variable), and SNO (C) (vari-
able). The enzyme specificities were set to chymotrypsin, 
trypsin, and Asp-N with a maximum leak rate of 3. The 
mass tolerance of the precursor ions was set at 20 ppm 
and the MS/MS tolerance was set to 0.02 Da. Only pep-
tides with high-confidence identification were selected 
for downstream protein identification analysis.

Statistical analysis
Each experiment was repeated three times to ensure the 
reproducibility of the results. The significance of differ-
ences was assessed using a paired samples t-test in SPSS 
20.0 [31], with p < 0.01 (**) considered a highly significant 
difference, p < 0.05 (*)a significant difference, and p > 0.05 
as a non-significant difference.

Results
Effect of intracellular NO on polysaccharide biosynthesis in 
N. flagelliforme
In experimental studies, SNP is commonly used as an 
NO donor and C-PTIO as a scavenger [32, 33]. To ver-
ify the effect of intracellular NO content on polysaccha-
ride biosynthesis in N. flagelliforme, SNP and C-PTIO 
were added exogenously, after which the NO content 
and polysaccharide yield were measured. Figure 1A and 

Fig. 1 Effect of SNP and C-PTIO on the NO content (A) and polysaccharide yield (B) of N. flagelliforme, as well as their correlation (C). * p < 0.05, compared 
with the control group
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B show the effects of SNP and C-PTIO on NO content 
and polysaccharide yield in N. flagelliforme, respectively. 
Compared with the control group, the NO content and 
polysaccharide yield of N. flagelliforme increased with 
the addition of SNP. However, the NO content and poly-
saccharide yield of N. flagelliforme did not change sig-
nificantly with the addition of C-PTIO. Further statistical 
analysis showed a positive correlation between intracel-
lular NO content and polysaccharide yield in N. flagel-
liforme (Fig.  1C), which was consistent with previous 
finding [9].

Effects of NO on the enzymatic activities of polysaccharide 
biosynthesis in N. flagelliforme
The correlation between five key enzymes related to 
polysaccharide synthesis (FBA, GK, G6PDH, ICDH, and 
UGDH) and the intracellular NO content was evaluated, 
and three enzymes (G6PDH, ICDH, and UGDH) were 
singled out for in-depth investigation. Figure 2 shows the 
correlation between the enzymatic activity of enzymes 
involved in polysaccharide biosynthesis and alterations 
of intracellular NO levels influenced by different inducers 
and scavengers, including JA, SA, sodium nitroprusside 
(SNP), as well as combined salicylic acid and C-PTIO 
(SA-C), or combined jasmonic acid and C-PTIO (JA-
C). Previous research demonstrated that intracellular 
NO can be modulated by SA, JA, SNP, and C-PTIO [9]. 
Moreover, SNP has gained significant recognition as an 
exogenous NO donor, while the NO scavenger C-PTIO 
is widely utilized to investigate the role of NO in plant 
stress tolerance by effectively reducing NO concentra-
tions in living tissues [34]. As shown in Fig.  2A and B, 
the enzyme activities of FBA and GK were not signifi-
cantly correlated with intracellular NO levels. However, 
the enzymatic activity of G6PDH respectively increased 
by 33%, 36%, and 40% under the influence of SA, JA, and 
SNP (Fig. 2C). Similarly, the enzymatic activity of ICDH 
was enhanced by 90%, 200%, and 160%, respectively 
(Fig. 2D). Furthermore, the enzyme activities of G6PDH 
and ICDH were inhibited by SA-C and JA-C (Fig. 2C and 
D). At the same time, the activity of UGDH decreased by 
18%, 41%, and 17% (Fig. 2E), which was significantly dif-
ferent from that of the control. In summary, changes of 
intracellular NO content influenced the enzyme activity 
levels of G6PDH, ICDH, and UGDH.

Construction of recombinant plasmids and protein 
expression
To investigate the SNO levels of the aforementioned 
three enzymes, the proteins were heterologously 
expressed in in E. coli and purified. Figure S1 illustrates 
the gel electrophorograms of the corresponding recom-
binant plasmids (ICDH, UGDH, and G6PDH), depicting 
their construction and protein expression profiles. The 

coding sequences of icdh, ugdh, and g6pdh were obtained 
by PCR, and the amplicons had the expected sizes (Fig-
ures S1A, B, and C). The purified PCR fragments were 
cloned into pET-28a, after which the constructs were 
confirmed by Sanger sequencing and comparison with 
the corresponding sequences in the NCBI database.

For efficient protein expression, the recombinant plas-
mids were introduced into E. coli BL21 (DE3). Single 
colonies were picked and verified by colony PCR. As 
illustrated in Figures S1E, F, and G, gel electrophoresis 
revealed sharp and well-defined bands, confirming the 
successful retention of the heterologous sequences in the 
BL21 (DE3) host.

The expression and purification of ICDH, UGDH, 
and G6PDH was performed according to the method 
described in 2.3. The soluble proteins were separated by 
SDS-PAGE electrophoresis, as depicted in Figures S1H, I, 
and J. The molecular weights of the purified proteins con-
sistently matched their anticipated sizes, thus validating 
the successful purification of ICDH, UGDH, and G6PDH.

SNO modifications in recombinant ICDH, UGDH, and 
G6PDH
To better understand the mechanism through which 
NO regulates enzyme activity, the SNO levels of three 
enzymes were studied using a biotin switch assay and 
western blot analysis. The biotin switch assay has been 
widely employed in previous studies for the assessment 
of SNO levels [35]. GSNO is a bioactive NO donor used 
to induce SNO in recombinant proteins [36]. In this 
assay, sodium ascorbate is employed as a reducing agent 
to convert S-nitrosated modifications into free sulfhydryl 
groups, which are subsequently labeled with biotin [28]. 
In the control group, glutathione (GSH) treatment of 
GSNO did not influence the SNO levels of the enzymes, 
while a reduced sample without ascorbate served as the 
negative control. Each purified protein contained a hexa-
histidine tag, allowing the quantification of spiked pro-
tein levels through the use of antibodies tailored to bind 
specifically to the tag. As shown in Figure 3, UGDH and 
G6PDH exhibited varying degrees of SNO, while ICDH 
did not undergo SNO modification.

Determination of the modified sites in SNO-UGDH and 
SNO-G6PDH
UGDH and G6PDH proteins were treated with GSNO 
for MALDI-MS analysis, which identified the sites of 
S-nitrosylation. In the case of the GSNO-treated recom-
binant UGDH protein, Cys423 was identified as the SNO 
site within the trypsin fragment (Fig.  4A). Similarly, for 
the GSNO-treated recombinant G6PDH protein, Cys249 
was pinpointed as the SNO residue in the trypsin frag-
ment (Fig.  4B). These results indicate that the Cys423 
residue of UGDH and the Cys249 residue of G6PDH are 



Page 6 of 10Li et al. BMC Biotechnology           (2024) 24:58 

Fig. 2 Effect of NO on the enzymatic activities of enzymes related to polysaccharide biosynthesis in N. flagelliforme. (A) FBA enzyme activity, (B) GK en-
zyme activity, (C) G6PDH enzyme activity, (D) ICDH enzyme activity, and (E) UGDH enzyme activity. * p < 0.05, compared with the control group
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Fig. 4 MS identification of SNO sites of UGDH (A) and G6PDH (B)

 

Fig. 3 The SNO modification levels of ICDH, UGDH, and G6PDH were assessed by western blot analysis. Recombinant proteins were supplemented with 
GSH or GSNO and harvested by adding 500 mM sodium ascorbate and 4 mM biotin-HPDP (one replicate without sodium ascorbate was included as a 
negative control) and incubated for a further 1 h at 23 °C and 800 rpm. Proteins were resolved by non-reducing SDS-PAGE and transferred to nitrocellulose 
membranes for western blotting with anti-biotin antibodies. The blot has been cropped for presentation purposes, the full uncropped blots images are 
included in the Supplementary materials
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modification sites for SNO, and the molecular weight of 
both proteins increased by 29 Da after S-nitrosylation, 
consistent with the expected value.

Discussion
It was shown that the intracellular NO content of N. 
flagelliforme was positively correlated with the polysac-
charide yield. However, the underlying mechanism was 
poorly understood. In recent years, more attention has 
been given to S-nitrosylation, a redox-based posttransla-
tional protein modification based on covalently linking an 
NO group to the reactive thiol of a cysteine residue. Lin 
et al. revealed the molecular mechanisms by which NO 
affects plant responses to salt stress, whereby NO regu-
lates vesicular transport and ion homeostasis through 
S-nitrosylation of RAB7, thereby influencing its interac-
tion with PI4P [37]. Here, the mechanism through which 
NO affects polysaccharide biosynthesis in N. flagelliforme 
was explored from the perspective of S-nitrosylation.

Three enzymes (G6PDH, ICDH and UGDH) were 
screened out as having a significant correlation with 
changes of intracellular NO levels by determining the 
relationship between the activities of enzymes related 
to polysaccharide biosynthesis in N. flagelliforme and 
intracellular NO levels. It was previously shown that NO 
increased G6PDH activity and expression in soybean 
roots under drought stress [38]. In addition, NO can 
stimulate the pentose phosphate pathway, and under its 
influence, the enzymatic activity of G6PDH was found 
to be enhanced, leading to a redistribution of carbon 
fluxes in the central metabolism of N. flagelliforme [39]. 
This shift in turn increased the conversion of carbon 
into polysaccharides, which accumulate intracellularly. 
These polysaccharides may serve diverse cellular func-
tions, such as maintaining energy homeostasis, resist-
ing environmental stresses, and storing energy. Studies 
likewise suggested a correlation between ICDH enzyme 
activity and intracellular NO levels [40, 41]. However, the 
reduction of UGDH activity due to intracellular NO may 
result from structural alterations in UGDH or changes 
in its catalytic mechanism. Recently, the oxidative stress 
agent methyl viologen was shown to enhance the activi-
ties of enzymes related to polysaccharide biosynthesis 
and significantly increase polysaccharide accumulation 
in cyanobacteria [42]. This is similar to the phenom-
enon observed in this study, in which the intracellular 
NO content affected enzyme activity and thus increased 
the polysaccharide yield of N. flagelliforme. Therefore, 
the subsequent experiments were primarily centered on 
these three enzymes.

The G6PDH, ICDH, and UGDH proteins were heter-
ologously expressed in E. coli and purified. Subsequently, 
the SNO modification levels of the three proteins were 
detected using a biotin switch assay and western blot 

analysis, which showed that UGDH and G6PDH could 
undergo SNO. In 2021, Francisco et al. also showed that 
G6PDH can be modified by SNO when NO regulates 
the NADPH-generating enzyme system in higher plants 
[43]. Similarly, Smolinski et al. proposed that G6PDH 
can undergo some degree of SNO. In the goldenrod gall 
fly Eurosta solidaginis, this enzyme promotes cryopro-
tectant synthesis by undergoing nitrosylation to modify 
the structure and function of the enzyme to adapt to 
the increased demand for NADPH at low temperatures. 
[44]. In addition, it was found that the protein function of 
G6PDH is regulated through SNO modification [44, 45]. 
Our results are consistent with these previous findings. 
Accordingly, we propose for the first time that UGDH 
protein of N. flagelliforme can undergo SNO modifica-
tion. These results indicate that NO may react with spe-
cific sulfhydryl residues in UGDH and G6PDH to form 
SNO products, thereby altering their activity and func-
tion, potentially affecting key metabolic pathways such 
as glycogen synthesis and glucose metabolism. Inter-
estingly, this investigation revealed that ICDH does not 
undergo SNO modifications, suggesting that it may pos-
sess distinct structural or mechanistic features compared 
to UGDH and G6PDH. This implies that ICDH likely 
employs a unique cellular mechanism to maintain the 
stability and functionality of the citric acid cycle. These 
results clarified that SNO could further affect cellular 
metabolism by regulating enzyme activity. SNO modi-
fication may constitute a part of the intricate regulatory 
mechanism of cells, which is associated with cellular 
adaptation and responses to various physiological and 
pathological conditions. To better understand the poten-
tial role of SNO in the function of UGDH and G6PDH, 
we also aimed to identify the specific modification sites 
through mass spectrometry analysis. Notably, this study 
discerned a notable increase of 29 Da in the molecular 
weight of specific fragments of both proteins follow-
ing the SNO modification process. It is well known that 
the introduction of chemical groups can have a signifi-
cant impact on protein structure and function [46]. The 
changes in the molecular weight of UGDH and G6PDH 
proteins can likewise be explained by the introduction of 
chemical groups due to SNO.

Based on these findings, it can be inferred that SNO 
potentially exerts significant effects on both protein 
structure and function, thus regulating key metabolic 
pathways. This study revealed that the mechanism by 
which NO influences the biosynthesis of polysaccha-
rides in N. flagelliforme involves the SNO modification 
of G6PDH and UGDH. Nonetheless, it is important to 
acknowledge that this study is not without its limita-
tions. Further investigations are essential to gain a more 
comprehensive understanding of how this modification 
impacts the functionality of UGDH and G6PDH, as well 
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as its implications for cellular metabolic processes. This 
discovery opens up a novel perspective that advances our 
comprehension of the regulation of polysaccharide bio-
synthesis. Subsequent research should focus on exploring 
its molecular mechanism, which can lay the foundation 
for the development of innovative drugs and functional 
foods.

Conclusion
In this study, intracellular NO levels were found to have 
a significant positive effect on the polysaccharide yield, 
as illustrated by comparing the effects of respective addi-
tion of NO donors and scavengers to N. flagelliforme 
cultures. The three enzymes G6PDH, ICDH, and UGDH 
were screened to be significantly correlated with intracel-
lular NO levels by correlation analysis. These enzymes 
were then heterologously expressed in E. coli and puri-
fied. Subsequently, the SNO modification levels of the 
three proteins were detected using a biotin switch assay 
and western blot analysis, which showed that UGDH and 
G6PDH could undergo SNO. Moreover, the SNO modi-
fication sites of UGDH and G6PDH were determined to 
be Cys423 and Cys249 by mass spectrometry analysis of 
GSNO-treated proteins, respectively. These results indi-
cate that intracellular NO affects polysaccharide bio-
synthesis in N. flagelliforme through SNO modification 
of UGDH and G6PDH. This provides important clues 
for further understanding the mechanism of NO action 
in cellular regulation and polysaccharide biosynthesis, 
as well as a new strategy for improving polysaccharide 
yields for industrial production.
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