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Abstract 

Background:  Callus induction is the first step in optimizing plant regeneration. Fit embryogenesis and shooting rely 
on callus induction. In addition, using artificial intelligence models in combination with an algorithm can be helpful in 
the optimization of in vitro culture. The present study aimed to evaluate the percentage and speed of callus induction 
optimization in carrot with a Multilayer Perceptron-Single point discrete genetic algorithm (GA).

Materials and methods:  In this study, the outputs included callus induction percentage and speed, while inputs 
were different types and concentrations of plant growth regulator (0. 5, 0.2 mg/l 2,4-D, 0.3, 0.2, 0.5 mg/l BAP, 1, 
0.2 mg/l Kin, and 2 mg/l NAA), different explants (shoot, root, leaf, and nodal), a different concentration compound of 
MS medium (1 × MS, 4× MS, and 8× MS) and time of sampling. The data were obtained in the laboratory, and multi-
layer perceptron (MLP) and radial basis function (RBF), two well-known ANNs, were employed to model. Then, GA was 
used for optimization, and sensitivity analysis was performed to indicate the inputs’ importance.

Results:  The results showed that MLP had better prediction efficiency than RBF. Based on the results, R2 in training 
and testing data was 95 and 95% for the percentage of callus induction, while it was 94 and 95% for the speed of cal-
lus induction, respectively. In addition, a concentration compound of MS had high sensitivity, while times of sampling 
had low sensitivity. Based on the MLP-Single point discrete GA, the best results were obtained for shoot explants, 1× 
MS media, and 0.5 mg/l 2, 4-D + 0.5 mg/l BAP. Further, a non-significant difference was observed between the test 
result and predicted MLP.

Conclusions:  Generally, MLP-Single point discrete GA is considered a potent tool for predicting treatment and fit 
model results used in plant tissue culture and selecting the best medium for callus induction.
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Introduction
Today, genetic engineering is used for different goals in 
plants, including improving, modifying, or creating a 
new trait and producing vaccines by molecular farming 
[1]. For this purpose, optimizing plant tissue culture is 
crucial. The first step in tissue culture produces high and 
fit callus induction.
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The carrot is a plant model for producing vaccines by 
molecular farming [1]. For this reason, optimizing the tis-
sue culture of carrots is essential. The best callus is the 
first step for proper regeneration and healthy plantlets 
[2–4].

Many studies were conducted to improve callus 
induction [5, 6]. In this regard, different explants, plant 
growth regulators, and media cultures were used for cal-
logenesis. Testing all of these treatments is costly and 
time-consuming.

Seemingly, new methods are required for modeling 
and optimizing callus induction, while traditional mod-
els may not be suitable. Several non-linear biological pro-
cesses based on Artificial Neural Network (ANN) can be 
used for this purpose since they have more flexibility in 
modeling in vitro culture [7–9]. Different types of ANNs 
are available such as Generalized Regression Neural Net-
work (GRNN), Multilayer Perceptron (MLP), radial basis 
function (RBF), and Probabilistic Neural Network (PNN) 
[10]. Many studies used the ANN model for modeling 
and optimizing plant tissue culture [7, 11, 12]. However, 
the ANN model has not formerly been used to optimize 
callus induction in carrot plant. Thus, the present study 
is considered the first report of in vitro callus induction 
model in the carrot.

MLP is a type of ANNs, applied for different pur-
poses, such as clustering, predicting, and classifying 
complex systems [13]. MLP can identify the relation-
ship between target and input variables and recognize 
the inherent knowledge in the datasets without previ-
ous physical considerations [14]. However, MLP does 
not present a neat mathematical formula that illustrates 
the relative relationship of each independent variable 
in the model. Hence, MLP is considered a “black box.” 
MLP consists of numerous highly interconnected pro-
cessing neurons working parallel to solve a particular 
problem [14]. MLP is learned by example. The examples 
should be carefully chosen; otherwise, time is wasted, or 
even worse, the model might work inaccurately [14]. The 
main demerit point of MLP is that its operation can be 
unpredictable because MLP learns how to find the solu-
tions by itself [14]. On the other hand, RBF is engaging, 
powerful, and easy-to-interpret ANNs with supervised 
learning [15]. However, most plant tissue culture studies 
have employed the individual ANN, and the comparison 
between these ANNs has rarely been studied in the tissue 
culture area [16].

Multi-objective functions can improve optimization 
problems in plant tissue culture and callus induction. 
In addition,many trials and errors to optimize the input 
data. Today, researchers have implemented a Genetic 
Algorithm (GA) to reduce the volumes of the calculations 
[7, 10, 11]. Many parameters should be considered for 

optimizing the callus induction. The GA is unsuitable for 
this purpose since it cannot check several factors simul-
taneously [17, 18]. Non-dominated Single point discrete 
GA was used for the first time to solve this problem, con-
sidered the first algorithm for evolutionary multi-objec-
tive optimization. In addition, it can analyze multiple 
parameters simultaneously [19].

Different machine learning algorithms (e.g., ANNs, 
neuro-fuzzy logic systems, support vector machine 
(SVM), and random forest) have been recently used for 
modeling and predicting various in vitro culture systems 
such as explant sterilization [13, 20], in  vitro seed ger-
mination [21], callogenesis [22–24], androgenesis [25], 
shoot proliferation [15, 26], rhizogenesis [27], in  vitro 
secondary metabolite production [28–30], and gene 
transformation [31, 32]. Among machine learning algo-
rithms, different types of ANNs, such as MLP, radial basis 
function (RBF), and generalized regression neural net-
work (GRNN), have been widely employed to model and 
predict in vitro culture processes [16, 33, 34]. Patra et al. 
used an ANN-genetic algorithm and response surface 
methodology to optimize ultrasound-assisted extrac-
tion of ascorbic acid, protein, and total antioxidants from 
cashew apple bagasse using an ANN-genetic algorithm 
and response surface methodology [35]. The application 
of ANNs and GAs to predict and optimize greenhouse 
banana fruit yield through nitrogen, potassium, and mag-
nesium was performed by Ramezanpour et al. [36]. Also, 
artificial neural networks and genetic algorithm used for 
optimization in food processing [37].

For the first time, the present study aims to find the 
best optimization for a type of callus induction of some 
parameters such as explants (nodal, root, leaf, and shoot), 
sampling day, and type and concentration of plant growth 
regulator. Besides, the concentration of Murashige and 
Skoog (MS) medium was performed using non-linear 
MLP-non-dominated Single point discrete GA and radial 
basis function modeling in carrot.

Materials and methods
Plant materials
Seeds of carrot (Daucus carota L. cv. Nantaise) were pre-
pared from Seed and Plant Improvement Institute (Karaj, 
Iran). Then, the seed surface was sterilized with a solu-
tion of 70% ethanol for 1 min, sodium hypochlorite (5%) 
for 20 min, and rinsed with sterile water three times [38].

Media and culture condition
The sterile seeds were cultured in ½ MS medium sup-
plemented with 3% sucrose and solidified with 0.8% agar. 
Then, the pH of the medium was regulated to 5.7 by 
1 N KOH or 1 N HCl before autoclaving, maintained at 
25 ± 2 °C, and exposed to light for 16 h and dark for 8 h 
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per day [38]. Ultimately, the seedling was prepared after 
two to three weeks of culturing sterile seeds [39].

Experimental design
Foremost, the explants were used, including root, shoot, 
nodal, and leaf. Then, they were excised in 3-mm pieces. 
The experiments were performed based on a Completely 
Randomized Design (CRD) with 24 replicates per treat-
ment by three sub-sets. The data were analyzed using 
SPSS software, and different means were identified using 
Tukey’s test (P = 0.05).

The eight treatments were evaluated for callus induc-
tion in carrot. In this study, the type and concentration of 
plant growth regulators [2, 4-Dichlorophenoxyacetic acid 
(2, 4-D), 6-Benzylaminopurine (BAP), Kinetin (Kin), and 
1-Naphthaleneacetic acid (NAA)], different concentra-
tions of MS medium (1× MS, 4× MS, 8× MS) used for 
different explants (leaf, nodal, root, and shoot), different 
times of sampling (8 and 25 days) were analyzed. Table 1 
shows the results of data analysis.

The reason for choosing 4× MS and 8× MS in this 
research was to investigate the effect of increasing miner-
als on the speed and percentage of callus induction.

In this research, hormonal compounds were used from 
previous studies, as well as new hormonal compounds 
with different concentrations, to determine the best hor-
monal combination to reach the highest speed and per-
centage of callus formation.

The effect of different treatments on callus induction 
was evaluated after 25 days of culture. The obtained data 
from laboratory tests were used for modeling and optimi-
zation using MLP-non-dominated Single point discrete 
GA (data not shown).

Calculatingthe speed of callus induction
Speed of callus induction obtained from sampling time 
divided by average callus diameter.

Multilayer Perceptron (MLP) model
The type and concentration of plant growth regulators 
(2, 4-D, BAP, Kin, and NAA), different concentrations of 

MS medium (1× MS, 4× MS, 8× MS) used for different 
explants (leaf, nodal, root, and shoot), and different times 
of sampling (8 and 25 days) were considered the inputs. 
In addition, the speed and percentage of callus induction 
were considered the outputs in the MLP model (Fig. 1). 
In this study, 90% of the data were used for training and 
10% for testing the data in the model. Different values 
of the parameters for a significant model were used to 
indicate the best construct of each model based on error 
analysis. Lastly, in each model, the results were obtained 
by considering the minimum estimation error based on 
Root Mean Square Error (RMSE) and the coefficient of 
determination (R2) as follows:

As shown above, the best fit for RMSE and R2 values 
is 0 and 1, respectively. The MLP includes an input layer, 
one or more hidden layers, and an output layer [40, 41]. 
In MLP, the number of hidden layers is shown along with 
the number of neurons in each layer [40].

In this study, Multilayer Perceptron-Single point dis-
crete GA was used with 11 hidden layers by Error Back 
Propagation (EBP) algorithm with a Bayesian method to 
indicate the speed and percentage of callus induction. 
The proper response of this method in a nonlinear model 
and sustainability in the face of noisy data are considered 
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Table 1  Statistics of MLP models for the percentage of callus 
induction and speed of callus induction of carrot (training vs. 
testing values) in carrot

Item Percentage of callus 
induction

Speed of callus 
induction

Training Testing Training Testing

R Squar 0.95 0.95 0.94 0.95

RMSE 134.66 451 8.12 389 Fig. 1  The schematic plan of the proposed MLP method
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the main reasons for using Multilayer Perceptron-Artifi-
cial Neural Network and Bayesian method [42–44].

Optimization process with MLP
Chromosome/population value should be first given for 
evaluating decision variables, mutation, selection, and 
cross-over to select the best solution by MLP. Finally, the 
members with the highest rank should be removed, and 
the new members as parents should be selected for pro-
ducing the next generation.

Obtaining the best fitness was used to select the best 
population. One hundred initial populations and 1000 
repeats were set.

The optimal input values included different concentra-
tions of 2, 4-D, BAP, Kin, and NAA, different concentra-
tions of MS, and various explants such as the leaf, nodal, 
root, and shoot. Different sampling times were deter-
mined to achieve the best output speed for callus induc-
tion based on the MLP Model.

Radial basis function (RBF)
RBF is a three-layer ANN consisting of an input layer, a 
hidden layer, and an output layer. This is the basis and 
principle for radial basis networks, which organize sta-
tistical ANNs. Statistical ANNs refer to networks that, in 
contrast to the traditional ANNs, implement regression-
based approaches and have not been emulated by biolog-
ical neural networks [45]. In an RBF model, the Euclidean 
distance between the center of each neuron and the input 
is considered the input of the transfer function for that 
neuron. The most well-known transfer function in RBF is 
the Gaussian function, which is determined based on the 
following equation:

where Xr , Xb , and h are input with unknown output, 
observed inputs in time b, and spread, respectively. 
The function’s output was close to 1 when ||Xr − Xb|| 
approached 0 and 0 when ||Xr − Xb|| approached a signif-
icant value. Finally, the dependent variable (Yr) by predic-
tor Xr was determined as follows:

where w0 and wj are the bias and weight of linkage 
between the bth hidden layer and the output layer, 
respectively.

Sensitivity analyses
Sensitivity analysis was used to determine which input 
parameters affected the output model most. In addi-
tion, it was used to determine which input parameters, 

f (Xr ,Xb) = e−[||Xr−Xb||∗0.8326/h]
2

Yr =

m
∑

b=1

wb ∗ f (Xr ,Xb)+ w0

including the type and concentration of 2, 4-D, BAP, 
Kin, and NAA, different concentrations of MS medium 
(1× MS, 4× MS, 8× MS), different explants such as the 
leaf, nodal, root, and shoot, as well as different times of 
sampling (8 and 25 days) were effective most in obtain-
ing the highest speed and percentage of callus induction. 
The sensitivity of output vs. input variables was deter-
mined based on the variable sensitivity error (VSE) value, 
which indicates the performance of the developed MLP 
model when all data are unavailable. Further, it specified 
a relative indication between the MLP model error and 
the VSE when all variables are available. VSR ranks the 
variables, where the essential variable has a higher value 
of VSR. The analysis indicated which variable is more sig-
nificant than the other parameters for callus induction.

Validation experiment
The obtained data and laboratory results, including the 
speed and percentage of callus induction, were used for 
optimization by MLP-Single point discrete GA and tested 
for evaluating the effects of the MLP-Single point dis-
crete GA model. Then, the speed and percentage of callus 
induction were optimized as in vitro parameters.

Statistical analysis
ANOVA analysis was performed based on a CRD with 
three replications. Tukey’s test identified significantly dif-
ferent means (P = 0.05).

Results
After analyzing the data obtained in the laboratory using 
SPSS software, the following results were obtained.

The purpose of this investigation was to compare 
the results obtained in the laboratory with the results 
obtained from the ANN.

In MS medium (MS in natural concentration)
Regarding MS medium in natural concentration in Addi-
tional file 1, the highest callus induction was obtained at 
shoot explants in media 1, 2, 5, 6, and 7, as well as nodal 
explants in media 2, 3, 4, 5, and 6. However, the lowest 
callus induction was reported in nodal explants in media 
1, 7, and all explants in medium 8 (Fig. 2) (Fig. 6. A, B, C).

In addition, the maximum speed of the callus was 
observed in the leaf and root in medium 4. In contrast, 
the minimum speed of callus was reported in nodal 
explant in media 1 and 7 and all explants in medium 8 
(Fig. 3).

In 4× MS medium (MS in 4× concentration)
In 4× MS medium (MS in 4× concentration in Addi-
tional file  2), the percentage of callus induction in 



Page 5 of 12Fallah Ziarani et al. BMC Biotechnology           (2022) 22:34 	

media 5, 6, and 7 was 100%, while it was 0% in media 1, 
2, 4, and 8 (Fig. 4) (Fig. 6D, E).

Further, the highest speed of callus was in root 
explants in treatment 5, while the lowest was in 1, 2, 4, 
and 8 media in all explants (Fig. 5).

In 8× MS medium (MS in 8× concentration)
Regarding 8× MS medium (MS in 8× concentration in 
Additional file 3), the callus induction and speed of cal-
lus in all treatments and four explants were 0% (Fig. 6F, 
G).

The results indicated the best medium for percentage 
and speed callus induction was MS medium in treat-
ment six by shoot explant. In 8× MS medium by all 
explants and treatments, the percentage and speed of 
callus induction was 0%.

Based on the obtained results, the type and concen-
tration of explants and plant growth regulator, kind of 
explants and concentration of the compound in MS 
medium, and sampling time should be optimized for 
obtaining the highest callus induction. Data were also 
analyzed with the MLP model to confirm obtained 
results in the laboratory.

Modeling and comparative analysis of MLP and RBF
MLP and RBF models were used to confirm the results 
obtained in the laboratory. In the current study, MLP 
and RBF models were used to model the speed and per-
centage of callus induction as an output on base input, 
including different types of explants and other kinds and 
concentrations of plant growth regulator, different con-
centrations of compounds in MS medium. Data mod-
eling through machine learning algorithms can provide a 
reliable approach to improve detailed knowledge of car-
rot speed and the percentage of callus induction. Then, 
MLP Model was used to analyze the predicted and accu-
rate data. R2 in training and testing data was over 95% 
and 95%, and 94% and 95% in the percentage and speed 
of callus induction by MLP model, respectively. By RBF 
model R2 in training and testing data were 88% and 83%, 
and 81% and 83% in the callus induction percentage and 
speed, respectively (Tables 1, 2).

Fig. 2  Percentage of callus induction in MS medium in carrot

Fig. 3  Speed of callus induction in MS medium in carrot
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Fig. 4  Percentage of callus induction in 4 MS medium in carrot

Fig. 5  Speed of callus induction in 4 MS medium in carrot
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Model accuracy was evaluated by RMSE and MBE, 
which found MLP to be more accurate than RBF 
(Tables 1, 2). Also, the regression lines revealed a good 
fit correlation between experimental and predicted 
values for embryogenic callus production rate in both 
the training and testing sets (Figs.  7, 8, 9). Also, the 
results obtained in the laboratory were confirmed by 
the MLP model.

Sensitivity analysis of the models
Sensitivity analysis was used to determine the sensitiv-
ity values of outputs and the effect of each input data 
on the percentage and speed of callus induction. The 
results showed that the highest sensitivity was related 
to the compound concentration in MS. At the same 
time, the lowest was related to the time of sampling in 
outputs, including the percentage and speed of callus 
induction (Figs. 10, 11 and 12).

Validation experiment
Based on the results of the validation experiment (Figs. 2, 
3, 4, 5, 6), the MLP model was considered an appropri-
ate method to indicate the best explants, the best type of 
plant, the concentration of plant growth regulators, the 
time of sampling, and concentration of the compound of 
MS medium for percentage and speed callus induction. 
In addition, the MLP model was considered a robust 
method for predicting the results of in vitro experiments.

In this study, treatment 6 was the best treatment for 
the percentage and speed of callus induction (Table  3), 

Fig. 6  A Callus induction of root explant in MS medium of treatment 6. B Callus induction of leaf explant in MS medium of treatment 6. C Callus 
induction of shoot explant in MS medium of treatment 6. D Callus induction of leaf explant in 4 MS medium of treatment 6. E Callus induction 
of shoot explant in 4 MS medium of treatment 6. F Callus induction of shoot explant in 8 MS medium of treatment 6. G Callus induction of root 
explant in 8 MS medium of treatment 6

Table 2  Statistics of RBF models for the percentage of callus 
induction and speed of callus induction of carrot (training vs. 
testing values) in carrot

Item Percentage of callus 
induction

Speed of callus 
induction

Training Testing Training Testing

R Squar 0.88 0.83 0.81 0.83

RMSE 140.55 480 10.12 401

Fig. 7  The neural network output regression and the coefficient 
of multiple correlation (R) for the percentage of callus induction in 
carrot by MLP model
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including 0.5  mg/l 2, 4-D + 0.5  mg/l BAP in shoot 
explants in 1× MS media. This result was also obtained 
by laboratory testing and the MLP model.

GA optimization process with MLP model
Results of optimizations with different fitness functions 
are shown in Figs. 13A, B, 14. Considering the speed and 
the percentage of callus induction, the single, together, 
and best explants for callus induction are different.

The best fitness function result of the speed of callus 
induction optimization alone obtain from leaf explants, 

1× MS medium on the eighth day of sampling and in the 
sixth treatment (Fig. 13).

The highest fitness function of the percentage of callus 
induction optimization alone was obtained from shoot 
explants, 1× MS medium in 25 days of sampling the sixth 
treatment (Fig. 13).

Nevertheless, the best fitness function of speed 
and percentage of callus induction optimization were 
obtained together from shoot explants, 1× MS medium 
on the eighth day of sampling, and in the sixth treatment 
(Fig. 14).

Discussion
Optimizing tissue culture in plants is essential for manip-
ulation using genetic engineering. The manipulation is 
used for creating or improving the plant traits and pro-
ducing vaccines in the plant.

In this regard, callus induction is the first step in the 
tissue culture process [46], the efficiency of which can be 
obtained with different explants, types, and concentra-
tions of various plant growth regulators and media. The 
best speed for each treatment is essential for acquiring 
the highest callus induction speed.

Testing all the treatments in the lab is complex, time-
consuming, and costly. Therefore, it is appropriate to use 
genetic algorithms to solve these problems.

The results indicated the effect of treatments, including 
explants, types and concentration of plant growth regula-
tor, time of sampling on concentration, and speed of cal-
lus induction via MLP and RBF.

Most plant tissue culture studies have employed 
MLP for modeling and predicting in vitro culture sys-
tems. According to these results, MLP had better 

Fig. 8  The neural network output regression and the coefficient of 
multiple correlation (R) for the speed of callus induction in carrot by 
MLP model

Fig. 9  A The neural network performance based on MSE vs. epochs of percentage of callus induction in carrot. B The neural network performance 
based on MSE vs. epochs of speed of callus induction
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performance than RBF for modeling and predicting 
carrot callus induction.

This study’s experimental results (data obtained from 
the laboratory) and MLP model results were similar. 
These results confirmed that the MLP model efficiently 
predicts tissue culture stages.

In addition, the high correlation between predicted 
and observed training and testing values indicated that 
this model is effective for the variables in the study.

One of the factors analyzed in this study was the type 
and concentration of plant growth regulators. The use 
of NAA in plant tissue culture was used in some studies 
[, 7–10, 47–49].

In the present study, analysis of percentage and 
speed callus induction in sensitivity analysis with 

MLP model indicates the highest effect in percentage, 
and speed callus induction was related to 0.5  mg/l 2, 
4-D + 0.5 mg/l BAP in shoot explants in 1× MS media. 
However, a reduction occurred in the percentage and 
speed of callus induction at low concentrations of BAP 
and 2, 4-D [47]. These results were confirmed by the 
data obtained in the laboratory.

In general, 2, 4-D is a type of auxin necessary for induc-
ing callus. Based on the results of the previous study, a 
high concentration of 2, 4-D can block normal callus 
induction [50] and disrupt natural genetic and physiolog-
ical processes [51]. Hardegger et al. used 0.1 mg/l 2, 4-D 
for callus induction in carrot [52]. Also, Marquet-Blouin 
et al. and Yau et al. indicated 1 mg/l 2, 4-D as the most 
influential factor in callus induction in carrot [1, 51]. In 
another study, Rabiei et al. demonstrated 0.2 mg/l 2, 4-D 
as the highest callus induction [53].

6-Benzylaminopurine (BAP) or benzyl adenine (BA) 
is a first-generation synthetic cytokinin, which plays a 
different role in the tissue culture of the plant, includ-
ing eliciting plants, growth and development responses, 
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Fig. 11  Sensitivity analysis of callus induction based on different 
concentrations of compound of MS in carrot

Fig. 12  Sensitivity analysis of callus induction based on times of the 
sampling in carrot

Table 3  The plant growth regulatory used in this study in carrot

Treatment Plant growth regulators

1 0.3 mg/l BAP + 2 mg/l NAA

2 0.2 mg/l 2,4-D

3 1 mg/l 2,4-D

4 0.2 mg/l 2,4-D + 0.2 mg/l BAP

5 0.2 mg/l 2,4-D + 0.2 mg/l kin

6 0.5 mg/l 2,4-D + 0.5 mg/l BAP

7 1 mg/l 2,4-D + 1 mg/l kin

8 without plant growth regulator
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setting blossoms, and stimulating fruit richness by 
stimulating cell division. The results of the present 
study are consistent with those of Pant et al. and Rabiei 
et  al., which indicated 1  mg/l BAP needed for callus 
induction [12, 54, 55] and Heidegger et al., which used 
0.5  mg/l BAP for callus induction. These results are 
similar to the results of this study [52].

Optimization analysis with the MLP model indicates 
that MS medium with 1× compound is considered the 
best medium for callus induction of 4× and 8× MS 
media. The callus induction in 8× MS media was 0%. 
Thus, the concentration compound of the medium is 
essential for the percentage and speed of inducing callus.

In addition, MgSO4, CaCl2, and MnSO4 are macroe-
lement nutrients essential for growing explants in the 
tissue culture [8].

Magnesium is an essential component of the chloro-
phyll molecule, vital for the activity of several nonspecific 
enzymes, as well as for transferring phosphates. MgSO4, 
as a chlorophyll molecule, is considered the central atom 
in the porphyrin structure. A magnesium ion in plants is 
flexible and plays the role of cation, balancing, and neu-
tralizing anions and organic acids. MgSO4 is often used 
as a unique source of both magnesium and sulfate ions 
[10].

The concentration of MgSO4 is 370 mg/l in MS media. 
Walker and Sato [56] observed a significant reduction in 
the callus induction formed from Medicago sativa when 
Mg2+ is omitted from the medium. It also indicated the 
highest level of magnesium in melon, which is effective in 
callus induction [56].

Additionally, calcium is a cofactor with different 
enzymes essential for synthesizing cell walls. Calcium 
deficiency causes shoot tip necrosis. Calcium chloride is 
the commonly used form of calcium in plant tissue cul-
ture. Finally, calcium plays a role in pH cellular, a regula-
tor in the source, as well as the sinking translocation of 
carbohydrates [57]. In addition, they indicated that 9 mM 
has the highest effect on callus induction among five con-
centrations of CaCl2 (0.1, 1, 3, 6, and 9 mM). The concen-
tration of CaCl2 is 400 mg/l in the MS culture medium.

Manganese (Mn) is a cofactor needed for some enzyme 
reactions, specifically in respiration and photosynthesis. 
In addition, manganese sulfate is usually considered the 
added form in plant medium.

In another study, Sarropoulou et  al. [58] indicated 
that the callus induction is doubled at 200  μM MnSO4 
compared to the control. Further, the concentration of 
MnSO4 is 22.3 mg/l in the MS culture medium.

Fig. 13  A Fitness function of speed of callus induction value vs number of optimization generations in carrot. B Fitness function of callus induction 
percentage value vs number of optimization generations in carrot

Fig. 14  Multi objective fitness function value vs number of 
optimization generations in carrot



Page 10 of 12Fallah Ziarani et al. BMC Biotechnology           (2022) 22:34 

Eventually, shoot explants, including 1× MS media and 
0.5 mg/l 2, 4-D + 0.5 mg/l BAP have the highest effect in 
percentage and speed callus induction.

Conclusion
Multiple models should be used to solve the problems 
related to tissue culture. In this study, MLP-Single point 
discrete GA, as a new computational tool, was used to 
predict the percentage and speed callus induction in 
carrot. This model can be used quickly to identify the 
interaction between treatments compared to statistical 
analysis in many experiments. The results indicated that 
MLP-Single point discrete GA is considered a fit model 
for predicting the optimum multi-treatment of in  vitro 
tissue culture.

This study used Multilayer Perceptron-Single point dis-
crete GA to optimize in vitro percentage and speed callus 
induction of carrot for the first time. Accordingly, this is 
the innovation of this research.
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