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Abstract 

Background: We present computational modeling of positron emission tomography radiotracer uptake with 
consideration of blood flow and interstitial fluid flow, performing spatiotemporally-coupled modeling of uptake and 
integrating the microvasculature. In our mathematical modeling, the uptake of fluorodeoxyglucose F-18 (FDG) was 
simulated based on the Convection–Diffusion–Reaction equation given its high accuracy and reliability in mod-
eling of transport phenomena. In the proposed model, blood flow and interstitial flow are solved simultaneously to 
calculate interstitial pressure and velocity distribution inside cancer and normal tissues. As a result, the spatiotemporal 
distribution of the FDG tracer is calculated based on velocity and pressure distributions in both kinds of tissues.

Results: Interstitial pressure has maximum value in the tumor region compared to surrounding tissue. In addi-
tion, interstitial fluid velocity is extremely low in the entire computational domain indicating that convection can 
be neglected without effecting results noticeably. Furthermore, our results illustrate that the total concentration of 
FDG in the tumor region is an order of magnitude larger than in surrounding normal tissue, due to lack of functional 
lymphatic drainage system and also highly-permeable microvessels in tumors. The magnitude of the free tracer and 
metabolized (phosphorylated) radiotracer concentrations followed very different trends over the entire time period, 
regardless of tissue type (tumor vs. normal).

Conclusion: Our spatiotemporally-coupled modeling provides helpful tools towards improved understanding and 
quantification of in vivo preclinical and clinical studies.
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Background
Cancer is a major cause of death worldwide, and it is esti-
mated that the number of people diagnosed with cancer 
will increase in the coming decades [1]. Positron emmis-
sion tomography (PET) is a powerful imaging modality 
towards improved diagnosis, prognosis, staging, restag-
ing and treatment response monitoring of cancer patients 

[2, 3]. The entirety of phenomena underlying radiotracer 
uptake in PET imaging still explored. Mathematical mod-
eling of biological systems is a powerful scheme, towards 
improved understanding and quantification, towards 
design of more effective clinical trials [4–7].

To simulate radiotracer phenomena, correlation of the 
tissue time activity curve (TAC) to the underlying tumor 
physiology has been used [8]. Conventional compart-
ment models (including Patlak plots) focus on analysis 
of temporal uptake without coupling uptake spatially 
[9–15]; by contrast it is possible to employ transport 
modeling, as we have pursued out elsewhere [16, 17], to 
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provide complete spatiotemporal coupling. Solute trans-
port modeling has been used widely to simulate drug 
delivery working based on the Convection–Diffusion-
Reaction (CDR) equation. Several studies have been done 
in this field before [18–23]. This approach is based on 
using partial differential equations (PDEs) in contrast to 
the compartmental modeling methods which are based 
on ordinary differential equations (ODEs).

Conventional compartmental modeling assumes 
that there are separate pools of tracer concentrations 
called compartments [24]. By contrast, the CDR equa-
tion leads to investigate spatiotemporal changes of drug 
or radiotracer uptake which cannot be achieved by the 
compartmental modeling method. This method consid-
ers the effects of various parameters such as the inter-
stitial velocity and pressure, capillary network structure, 
and permeability of the tissues on PET tracer distribu-
tion which are not integrated within compartmental 
modeling methods. In spatiotemporal-based modeling, 
the different effects of convection, diffusion, reaction, 
and binding to cells can be incorporated [17, 25]. As an 
example, some three-dimensional (3D) simulations were 
developed to study drugs transport in a peritoneal tumor 
during the intraperitoneal chemotherapy and effects of 
tumor geometries and sizes, vascular normalization ther-
apy, drug diffusivity, necrotic core, and tissue permeabil-
ity on the drug delivery [26, 27]. We pursued out a similar 
approach to simulate tracer [17] and drug delivery mech-
anisms [28] governed by tumor transport phenomena. 
None of the above-mentioned studies consider the struc-
ture of microvasculature, and either simplified homog-
enous tracer/drug release in entire tumor domain or in 
some cases one-dimensional (1D) synthetic capillary 
networks were employed. As tumor microvasculature 
provides nutrients, oxygen, and glucose for the tumor 
growth [29], its effect on solute transport is inevitable, so 
it should be considered in the geometry. Additionally, the 
size and density of capillaries vary in different tissues, so 
using the synthetic capillary structure can result in unre-
alistic outcomes compared to in vivo studies.

A number of studies have been conducted on the for-
mation of capillaries around and within tumors. These 
studies have used mathematical modeling to gener-
ate tumor microvasculature [30]. In our past effort [17], 
which was based on previously employed microvascular 
networks produced by Anderson et al. [31], we generated 
a continuous two-dimensional (2D) capillary network 
and used a reinforced random walk to follow the move-
ment of endothelial cells [25, 30, 32, 33]. No past efforts 
have used geometry of capillary networks which is taken 
from a synthetic image for simulation purposes, and only 
computational-based capillary generations have been 
used. In our recent studies, the CDR equation was used 

to investigate the Fluoromisonidazole (FMISO) tracer 
[34] and targeted drug delivery [35] distribution in the 
solid tumor. However, as current medical instruments 
cannot detect nano- and micro-scale sized microvascu-
lature in tissues due to their poor accuracy, inserting the 
image of the capillaries into the numerical simulation for 
further implementations has remained a significant chal-
lenge. To tackle this problem, several studies have been 
proposed to detect the microvasculature structure from 
medical images. As clinical images contain background 
noise, image processing techniques must be carried out 
for detection of capillaries. Numerous filters have been 
introduced to cancel out the noise effect including single-
scale and multi-scale matched filters [36–39], single-scale 
and multi-scale Gabor filters [40, 41], and Bar-selective 
Combination of Shifted Filter Response [42]. In the lat-
ter study, a new filter was proposed, combining previous 
filters in a novel way. This filter has a direction-independ-
ent ability to detect any bar-like structure, making it a 
good candidate for detection of microvasculature.

None of the previously mentioned studies carried out 
mathematical modeling of tracer delivery via structures 
of capillaries as extracted from medical images. To fill 
this gap, the present study aims to examine FDG PET 
imaging through computational approach. The concen-
tration of FDG tracer was calculated based on combina-
tion of 5 K-compartmental method with CDR equations. 
Our study couples both time and space as key factors 
in FDG tracer distribution in both normal and tumor 
regions. To solve for interstitial pressure, velocity, and 
concentration of FDG, intravascular flow inside capillar-
ies and interstitial fluid flow inside tissues are coupled. 
Subsequently, the distribution of the FDG tracer is cal-
culated. As such, we aim to enhance quantification and 
assessment of uptake in individual patients and tissues. 
Next, we elaborate our methodology, followed by results, 
discussion, and conclusion.

Results and discussion
Pressure and velocity distribution
The obtained intravascular pressure and interstitial fluid 
pressure distributions are shown in Fig. 1. The maximum 
value of the interstitial fluid pressure (IFP) is 2.74 kPa in 
the tumor region due to the leaky behavior of the capil-
laries in solid tumor regions along with the lack of lym-
phatic vessels in tumor compared to normal tissue. 
Additionally, IFP is higher in the area where capillaries 
are closer together, in both normal and tumor tissues, 
i.e., the IFP is proportional to the microvascular density. 
The heterogeneous capillary network as source terms in 
interstitial fluid flow equation cause heterogeneous IFP 
distribution in both tumor and normal tissues. Inter-
stitial fluid velocity (IFV) can be obtained in the whole 
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tissue domain as there is a direct relation between IFP 
and IFV in the Darcy’s law. As can be seen from Fig. 1c, 
the value of the IFV is extremely low (maximum value 
~ 1.78e−7 m/s & median value ~ 4.5e−8 m/s).

FDG tracer distribution
Spatiotemporal distribution of FDG radiotracer concen-
trations (including  Ci; extracellular,  Ce; intracellular,  Cm; 
phosphorylated intracellular, and  Ctotal; total concentra-
tions) are demonstrated in Fig.  2. To provide the most 
distinguishable vision for all of the concentrations, dif-
ferent concentrations are normalized to maximum value 
of total concentration  (Cm) at six different time frames. 
It is seen that at the very beginning of tracer infusion, 
free tracer concentration  (Ci) is dominant compared to 
both intracellular concentration  (Ce) and phosphoryl-
ated (metabolized) intracellular concentration  (Cm). With 
passage of time,  Ce and  Cm increase, first the former, 
followed by the latter. At the beginning,  Ci dominates 
the total concentration, but as time passes, the amount 
of  Ci is reduced, and  Ce and  Cm dominate the total 
concentration.

As it is observed,  Ci and  Ce follow different trends from 
one another. Furthermore, the total FDG tracer concen-
tration in tumor region is significantly higher than in sur-
rounding normal tissue region at all time frames. This 
happens because of the great rate of extravasation from 
the capillary network in the tumor region and higher 
microvascular density (MVD) in this area. Maximum 
total concentration takes place in the tumor area, and is 
multiple times greater compared to concentration in the 
surrounding normal tissue.

Next, we calculated the average value of the total con-
centration (in time and space) separately in tumor and 
normal tissues. Results show that average value of  Ctotal 
in tumor region is higher than the average value of  Ctotal 
in normal tissue. As seen in Fig.  2, regions with higher 
MVD, have higher concentration compared to regions 
with less dense capillaries or none. It should be men-
tioned that for each time step, the maximum value is 
different. The location where the maximum value of 
concentration occurs is nearly at the center of the tumor 
region. For more clarification, the median value of differ-
ent concentrations at each time points within or outside 
of the tumor are reported and compared in Table 1.

Time–space-averaged values of the extracellular tracer 
concentration  (Ci), intracellular concentration  (Ce), and 
phosphorylated intracellular concentration  (Cm) of FDG 
tracer were calculated. The aforementioned concentra-
tions were averaged along three cutlines and at six points, 
as shown in Fig. 3. These points were chosen at locations 

Fig. 1 Distribution of blood pressure, IFP, and IFV: a intravascular 
(blood) pressure, b IFP within normal and tumor tissues, c IFV in both 
normal and tumor tissues
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Fig. 2 Spatiotemporal distribution of FDG radiotracer including extracellular (column 1), intracellular (column 2), phosphorylated intracellular 
(column 3), and total (column 4) concentrations, shown at 6 different time frames. Different concentrations are normalized to maximum value of 
total concentration. The same color bar is used for all plots
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with different physical properties: point #1 (in the area 
with high MVD) and #2 (in the area with low MVD) are 
located in tumor region, point #3 (in the area with high 
MVD) and #4 (in the area with low MVD) are in the nor-
mal tissue region (near the tumor region), and point #5 
(in the area with high MVD) and #6 (in the area with 
low MVD) are positioned in the normal tissue region 
where they are far from the solid tumor. With the same 
approach, the locations of cutlines were chosen.

As it can be seen in Fig.  3, we have selected differ-
ent spots in various areas of domain to comparison the 
effect of microvascular density on IFP and tracer con-
centration. In the areas where the microvascular den-
sity is higher, the IFP is also higher. For instance, IFP for 
point#1 is about 2.7 kPa and for point#2 which is located 
in an area with lower microvascular density is about 
2.55 kPa. The quantitative results for concentrations are 
shown in Figs. 4 and 5 and also Additional file 1: Figs. S2 

and S3. The average concentrations at point #1 (Fig. 4a) is 
higher than the other five points as this point is located 
in tumor region with a high MVD. As it can be seen in 
Fig.  4 and Additional file  1: Fig. S2, the maximum total 
concentration for this point (point #1) is about 5000 mol/
m3 at 3600  s, but for the other points, especially those 
which located in normal tissue, such as point #4 with 
the maximum total concentration below 1  mol/m3, this 
quantity is much lower. Although point #2 (Additional 
file  1: Fig. S2a) is also located within the tumor region, 
it has lower concentration (maximum total concentra-
tion ~ 4000  mol/m3) in comparison to point #1. This is 
due to the high impact of MVD on the concentration of 
FDG tracer. The same behavior is observed by compar-
ing points #3 (Fig. 4b) vs. #4 (Additional file 1: Fig. S2b) 
and also point #5 (Additional file 1: Fig. S2c) vs. #6 (Addi-
tional file 1: Fig. S2d) to consider the effect of microvas-
cular network’s structure on tracer distribution. Results 

Table 1 The median value of different concentrations at each time points within or outside of the tumor

Time [s] Tissue type Ci (mol/m3) Ce (mol/m3) Cm(mol/m3) Ctotal(mol/m3)

60 Tumor 23.1867 0.2301 1051.0168 1074.4336

Normal 2.0102 0.01781 108.3105 110.3385

120 Tumor 106.2470 2.10696 2587.4268 2695.7808

Normal 12.0157 0.2142 338.3387 350.5686

180 Tumor 235.5401 7.51638 3040.0453 3283.1018

Normal 32.3107 0.9013 532.7309 565.9429

600 Tumor 856.0214 140.0836 2243.2288 3239.3339

Normal 216.5706 29.0337 778.7145 1024.3189

1800 Tumor 1056.0064 798.8236 1412.9760 3267.8060

Normal 430.3229 254.8346 686.42605 1371.5835

3600 Tumor 829.3591 1689.3651 1055.1704 3573.8946

Normal 416.8322 667.4632 570.2119 1654.5072

(a) Location of points (b) Location of cutlines

Cutline 3

Cutline 2

Cutline 1

Point 3

Point 5

Point 1

Point 6

Point 2

Point 4

Fig. 3 The location of points and cutlines which were used to calculate the average compartmental concentration values of FDG tracer
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demonstrate that FDG tracer concentration are higher at 
point #3 compared to point #4 due to the higher MVD. 
As it is shown in Figs.  4 and Additional file  1: Fig. S2, 
the maximum total concentration for point #3 is 8 mol/
m3 which is about eight times higher than the maximum 
total concentration for point #4 (1  mol/m3). By observ-
ing point #5 and #6, the effect of microvasculature is also 
clearly visible. Point #5 is located in a region with a higher 

MVD in comparison to point #6, so the concentration at 
point #5 is higher than point #6. In any case, points #1 
and #2 still have higher concentration values because of 
their location inside the solid tumor region. The reason 
for these results is the high permeability of the capillaries 
in the tumor compared to the normal tissue. Addition-
ally, metabolism rate in cancer tissue is higher than in 
normal tissue.

Cutline #2 passing through the tumor region with the 
maximum total concentration of 1400 mol/m3 depicts the 
highest FDG tracer concentration (Additional file 1: Fig. 
S3a) compared to the other two cutlines. However, cut-
line #1 (Fig.  5) passes through the normal tissue region 
with a low MVD and it is located far from the solid tumor 
in comparison to cutline #3 (Additional file 1: Fig. S2b), 
and thus has the lowest concentration value (~ 12  mol/
m3).

At early stages (0–600 [s]), FDG tracer activity (Figs. 4 
and 5 and Figs. S2 and S3) follows the same trend as the 
plasma concentration profile (i.e.,  CP profile). At that 
period in time, change in free tracer concentration  (Ci) is 
dominant compared to other compartmental concentra-
tions. Intracellular tracer concentration  (Ce) has signifi-
cant values at final stages (1800-3600 s).

The tumor microenvironment is very complex to be 
accurately represented by a single mathematical model. 
Therefore, the modeling used in the present study con-
tains a number of assumptions. One of the most impor-
tant assumptions is using 2D model instead of 3D model. 
Based on the literature [43], the effect of 3D modeling 
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Fig. 4 The averaged FDG tracer compartmental concentration distribution versus time for point 1
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on spatial-mean parameters such as internalized drug is 
insignificant in the prostate tumor. A 2D model is also 
used in other studies including Jain and co-authors [44, 
45], Soltani et al. [17, 34, 46], Chou et al. [47], and Steph-
anou et al. [30]. The next assumption is that the uniform 
transport characteristics, as well as uniform tumor cell 
density are considered regardless of the intra-or inter-
tumor heterogeneity. The blood flow, in most cases, is 
laminar, even in the aorta. Considering blood flow in 
capillary as laminar flow should be fine, but the impact 
of red blood cell on the blood flow should be investigated 
in future studies, as the capillary dimension in some loca-
tions is comparable to the diameter of red blood cells. In 
addition, blood flow in capillaries should be considered 
as two-phase flow because it includes cells and plasma. 
Another parameter not accounted in this study is the 
rheology of blood. The static microvascular network 
extracted from an image is considered in this study, 
while the dynamic structure of capillary network should 
be investigated to consider the effects of shear stress, 
hemodynamic stimuli, and metabolic stimuli in the mod-
eling. In general, due to the limitations and the lack of 
experimental verification, the predictions of the model 
described in the current study should be considered as 
qualitative instead of quantitative.

In future efforts, our main focus would be on using real 
extracted images from individual patients coupled with 
3D modeling. In addition, we will utilize advanced tumor 
growth modeling and heterogeneous shapes of tumors to 
study tracer distributions. Another area of ongoing work 
is the inverse problem of estimating parameters of inter-
est (such as diffusion) from imaging data.

Validation of numerical model results
Numerous studies [6, 18, 23, 48] have addressed high IFP 
as the most significant obstacle to effective drug delivery 
to solid tumors. The results for IFP in present study have 
good agreement with the experimental results of Huber 
et al. [49] and Arfin et al. [50]; and also numerical study 
of Moradi Kashkooli et  al. [51] and Sefidgar et  al. [25]. 
The non-uniform distribution of IFV in tumor region has 
also been reported in Zhao et  al. [52] and Pishko et  al. 
[53]. Although the IFV values in current study are not 
equal to observations of Hompland et al. [54], their order 
of magnitude is the same. The obtained result for IFV 
has also been reported in the experimental work of But-
ler et al. [55] and also in the numerical studies of Pishko 
et al. [53], Sefidgar et al. [25], and Moradi Kashkooli et al. 
[35, 51]. Besides, the FDG tracer uptake value agrees well 
with the experimental results published by Carson [56] 
and Sha [57] research groups.

Figure  6 compares FDG concentration in tumor area 
against (i) experimental observation of Backes et  al. 

[21] in which two different methods were used to esti-
mate tracer kinetic constants (Table  2) and (ii) numeri-
cal results of Soltani et  al. [17] which simulated the 
distribution of FDG tracer concentration in a synthetic 
mathematical-derived capillary network based on CDR 
equation. Total uptake in both extracellular and intra-
cellular spaces is calculated, as measured in radionu-
clide imaging. Because the domain and conditions of 
experimental and modeling are different, the results do 
not exactly match. However, the total uptake of FDG in 
tumor for numerical simulation demonstrate nearly simi-
lar trend to experimental data. It is observed in the study 
that, after 15 min, the quantity of total concentration is 
very close to total concentration in the experimental 
results, and after 20  min the results exactly match with 
experimental data-2.

Conclusion
In the present work, we aimed to integrate realistic 
microvasculature structure within mathematical mod-
eling of PET FDG tracer distribution using the CDR 
equation. The employed image processing method in 
this work enables consideration of any 2D synthetic 
or real microvasculature structure which could be 
expanded to 3D images for modeling the tracer dis-
tribution. The effects of intravascular and extravascu-
lar fluids were investigated by coupling the blood and 
interstitial flows. The results of interstitial pressure and 
blood pressure are consistent with experimental data. 
Maximum interstitial pressure occurred in solid tumor 
compared to normal tissue due to the lack of lymphatic 
drainage system along with the leaky nature of capil-
laries in the solid tumor. Subsequently, FDG uptake 
patterns were investigated by coupling previously 
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Fig. 6 Comparison of the results of current study with two 
experimental results [21] and numerical results [17]



Page 8 of 15Fasaeiyan et al. BMC Biotechnology           (2021) 21:67 

calculated interstitial pressure and velocity with the 
CDR equation. Results demonstrated that FDG tracer 
concentration decreases by increasing the distance 
from capillaries due to the low rate of FDG tracer diffu-
sion coefficient. In the regions with high microvascular 
density, the dependence of FDG distribution on capil-
lary network can be seen clearly. Our framework leads 
to comprehensive mathematical modeling of tracer dis-
tribution in tissues for each image of interest.

Computational models cannot consider all complexi-
ties of the real world, though our models are being con-
tinually expanded. Notably, the Warburg effect is an 
important hypothesis of FDG PET imaging. The glucose 
metabolic rate can depend on several physiological fac-
tors of tumor microenvironment such as hypoxia, glu-
cose transporter (GLUT), hexokinase (HK), and acidity 
[58]. These effects will be considered in future works. 
Additionally, it might be more realistic to extract ves-
sels from histological slides or vascular networks from 
the dorsal skinfold window chamber model.

Given the higher resolution of our method compared 
to PET images, to compare simulation results with PET 
images data, an approach would be reduce the accuracy 
of our outputs through mapping methods (so that for 
example multiple pixels of our simulation would cor-
respond to one pixel of PET); this can for instance be 
performed through careful simulation of the imaging 
process (forward modeling, resolution and noise deg-
radation, followed by inverse problem). In the case of 
applying capillary-based transport simulation to validate 
or explain PET imaging, future efforts include enhance-
ment of simulation studies with biopsy/pathology sam-
ples, on which the microvasculature can be imaged and 
compared with the PET scan prior to biopsy. Another 
direction in future work is to tackle the inverse problem 
for estimating parameters of interest taken from imaging 
data. This also includes decoding structure of the micro-
vascular network from a tracer distribution of PET image 
data through a combination of inverse methods and 
multi-objective optimization, rather than directly solving 

the tracer distribution on a real/synthetic microvascula-
ture by solute transport models.

Methods
Generation of microvasculature structure by image 
processing techniques
To generate the two-dimensional computational domain 
from the image consisting of capillaries, the contrast 
and quality of the image must be improved. In general, 
input images have background noise, low contrast, and 
homogeneous colors. As a result, image processing tech-
niques must be taken into account before extracting the 
microvasculature regions. Additionally, due to the lack 
of availability of high-resolution clinical data (around 
micrometer or 100 nm), an image from Welter et al. [59] 
is used for this step. To generate the 2D computational 
domain from the image consisting of capillaries, the 
contrast and quality of the image must be improved. In 
general, input images have background noise, low con-
trast, and blurred uptake. As a result, image processing 
techniques must be considered before extracting the 
microvasculature regions. Additionally, due to a lack 
of availability of high-resolution clinical data (around 
micrometer or 100 nm), an image from Welter et al. [43] 
is used for this step. The steps taken are shown in Fig. 7. 
First, a green channel of the red–green–blue (RGB) 
image was extracted as it has the highest contrast com-
pared to red and blue channels [60], and vessels and the 
background can be distinguished more easily. Next, the 
contrast-limited adaptive histogram equalization algo-
rithm [61] was used to enhance the contrast of the green 
channel of the image by minimizing a variation in color 
intensities. These steps make it possible to recognize the 
capillaries areas from the background more effectively 
compared to the raw RGB image. After contrast improve-
ment, a binary image was created from the pre-process-
ing output, which means that each pixel with a higher 
value than the specified threshold is assigned a 1 value; 
otherwise 0. The threshold value is chosen in a trial-and-
error manner which is different for every image. This step 

Table 2 Summary of parameters used in solute transport modeling

Parameter Symbol [unit] Value References

Effective diffusion coefficient Deff [mm2/s] 0.37e−9 (Normal Tissue)
2.5e−3 (Tumor Tissue)

[70]

Coefficient of microvascular’s permeability P [m/s] 3.75E−7 (Normal)
3.00E−6 (Tumor)

[43, 47]

Coefficient of filtration reflection σf 0.9 [25]

Constant transport rate L3 [1/min] 8.2e−4 (Normal Tissue) [17]

Constant transport rate L4 [1/min] 6.7e−4 (Normal Tissue) [17]

Constant transport rate L5 [1/min] 5.3e−4 [17]
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Fig. 7 The steps were followed to improve quality of the input color image a and make it as the computational domain b for FEM analysis. 
Reproduced with permission from [59]
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should be performed because the binary version of the 
image shows where noise patterns are more dense and 
in order to remove noise prior to the next step. Based 
on the subsequent image, minimum contour values were 
calculated in which the maximum accuracy belongs to 
the border of the capillaries. In the last step, the image 
contour value was calculated to find the boundaries of 
capillary walls. These boundaries determine edges of the 
closed surface which was then imported as the computa-
tional domain for finite element method (FEM) analysis. 
In the last step, the image contour value was calculated to 
find the boundaries of capillaries’ wall. These boundaries 
determine edges of the closed surface which was then 
imported as the computational domain for FEM analysis. 
These steps are shown in Fig. 7.

Governing equations for solute transport modeling
To simulate FDG tracer uptake and distribution in the 
body tissues, the governing CDR equation must be fully 
coupled with both fluid flow inside the capillaries and 
interstitial flow in the tissues.

In CDR modeling, different steps for the tracer delivery 
to tumor region must be followed such as transportation 
of the tracer from vascular region to interstitial space. 
The transport of tracer is divided into three main parts: 
tracer transport in extracellular space by diffusion and 
convection mechanisms, internalized into the cells, and 
then intracellular tracer phosphorylation [62–64]. Com-
bining the solute transport CDR equation with the stand-
ard 5 K compartmental model for FDG tracer in porous 
media, including consideration of source/sink terms [48, 
65–67], we arrive at:

where Ci : Extracellular tracer concentration; Ce : Intra-
cellular tracer concentration; Cm : Phosphorylated intra-
cellular concentration (FDG-6-P); Deff  : Tracer effective 
diffusion coefficient; vi : Interstitial flow velocity; �bt : 
Tracer transport rate in unit of volume from blood ves-
sels to interstitial space; �Lt : Tracer transport rate in unit 
of volume from interstitial space to lymphatic drainage 
system; L3 and L4 : Transport rates; and L5 : Phosphoryla-
tion rate.

(1)

∂Ci

∂t
=∇ ·

[

Deff ∇Ci

]

− vi∇ · (Ci)− L3Ci

+ L4Ce +�bt −�Lt

(2)
∂Ce

∂t
= L3Ci − (L4 + L5)Ce

(3)
∂Cm

∂t
= L5Ce

In these equations, �bt and �Lt are respectively the 
tracer exchange rate per unit volume through the blood 
microvessels into the extracellular matrix (ECM), and 
from the ECM into the lymphatic drainage system. �bt is 
defined based on Patlak’s model, as follows [48, 68, 69]:

in which Pe is the Peclet number, illustrating the con-
vection rate to the diffusion rate, σf is the coefficient of 
filtration reflection, P is the coefficient of capillary per-
meability, S/V is the surface area per unit volume, Ci is 
extracellular tracer concentration, and CP is the tracer 
concentration in the inlet of microvessels.

The lymph term is considered to be distributed uni-
formly, only in normal tissue. The rate of tracer trans-
port via lymphatic drainage system has been assumed 
to be as follow [48, 68, 69]:

The material properties of FDG tracer are shown in 
Table 2. As the tracer concentration varies by time, the 
concentration profile of CP, plasma arterial concen-
tration of FDG tracer in blood, was used according to 
the previous study of Backes et al. [21], as is shown in 
Fig. 8.

(4)�bt = φb(1− σf )Cp +
PS

V
(Cp − Ci)

Pe

ePe − 1

(5)Pe =
φb(1− σf )

P S
V

(6)�Lt = φLCi

Fig. 8 The variation of plasma arterial concentration of FDG tracer in 
blood (CP) versus time
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To calculate compartmental concentration, first vi must 
be derived and then be implemented in Eq. (1). To simu-
late the interstitial fluid flow, the continuity equation in 
the porous media (here tissue regions) is modified to 
include the source ( φb ) and sink ( φL ) terms [18, 32, 61, 
71–73]:

The source term is defined based on the differences 
of the intravascular fluid pressure from IFP and the 
intravascular osmotic pressure from interstitial osmotic 
pressure which is defined as follows [51, 72]:

(7)∇ · vi = φb − φL

(8)
φb = Lp

(

S

V

)

(Pb − Pi − σs(πb − π i))

φL = LPL

(

S

V

)

L

(Pi − PL)

where LP : Vascular hydraulic conductivity; S
V  : Surface 

area per unit volume; Pb : Blood pressure; Pi : Interstitial 
fluid pressure; σs : Average osmotic reflection coefficient; 
πb : Blood osmotic pressure; πi : Interstitial fluid osmotic 
pressure, LpL(S/V)L: Lymphatic filtration coefficient; and 
 PL: Hydrostatic pressure of lymphatic vessels.

In order to find the value of Pb and Pi , the laminar 
flow and Darcy’s law must be solved in intravascular and 
interstitial regions, respectively.

The combination of Eq. (7) with Darcy’s law leads to:

where κ is interstitial hydraulic conductivity.
The employed material properties in the laminar flow 

and Darcy’s law are listed in Table 3.

Computational domain, grid independency and boundary 
conditions
The computational domain includes a rectangle 
(6.72  cm × 6.09  cm) representing the normal tissue 
along with a tumor region which is shown as circle 
 (dtumor = 2.3  cm) located at the center. Four parent ves-
sels are located at up and down sides and the middle of 
the rectangle which are connected to microvasculature 
network.

Grid independency examination is carried out to dem-
onstrate the effect of variation of mesh elements number 
on the simulation results. Suitable number of elements is 
selected by a trade-off between the computational cost 
and the accuracy of numerical results. When the finer 
mesh does not vary the results significantly, this mesh 
is assumed as an appropriate mesh. To this aim, various 
computational mesh—coarse, normal, fine, finer, and 
extra fine—are generated. With a fine mesh (5 times 
the primary mesh numbers), less than 2.5% change in 

(9)−κ∇
2Pi = φb − φL

Table 3 The material properties of the tumor and normal tissues [6, 17]

Parameter Symbol [unit] Value

Plasma osmotic pressure πb[mmHg] 20

Interstitial fluid osmotic pressure πi[mmHg] 10 (Normal tissue)
15 (Tumor tissue)

Average osmotic reflection coefficient σs[−] 0.91 (Normal tissue)
0.82 (Tumor tissue)

Hydraulic conductivity of the microvascular wall Lp[cm/((mmHg) s)] 0.36e−7 (Normal tissue)
2.8e−7 (Tumor tissue)

Interstitial hydraulic conductivity κ[m2/(Pa s)] 6.41e−15 (Normal tissue)
30.0e−15 (Tumor tissue)

Lymphatic filtration coefficient LpL(S/V)L [1/(mmHg s)] 1.33e−5 (Normal tissue)
0 (Tumor tissue)

Hydrostatic pressure of lymphatic vessels PL [Pa] 0

Fig. 9 A zoomed-in view of the mesh element structure
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concentration of FDG tracer and fluid flow parameters 
was observed. By enhancing the mesh numbers to finer 
and extra fine, which have respectively 10 and 20 times 
the primary mesh numbers, almost no changes in the 
concentration of FDG tracer and fluid flow parameters is 
found. As a consequence, the fine mesh elements (with 
the element number of 2887540) are employed in this 
study because of its lowest computational costs com-
pared to other ones. It should be noted that triangular 
mesh type is utilized in the current study for tumor and 
normal tissue as shown in Fig. 9.

Between tumor and normal regions, the continuity 
boundary condition was assumed which consisted of the 
concentration, and concentration flux as follows:

In the above equations, �− and �+ indicate tumor and 
normal tissue regions, repectively. Furthermore, an open 
boundary condition was considered for all four edges 
of the rectangle to prevent accumulation of the intersti-
tial fluid in the domain and impliment the mass trans-
fer across boundaries including convective inflow and 
outflow. The open boundary condition is expressed as 
follows.

Computational domain considering tumor, normal tis-
sue, and microvascular network along with the boundary 
conditions are shown in Fig. 10.

(10)
(

Dt
eff ∇C + viC

)

∣

∣

�
−

=

(

Dn
eff ∇C + viC

)

∣

∣

�
+

(11)C
∣

∣

�
−

= C
∣

∣

�
+

(12)−n · ∇C = 0

Numerical solution details
There exist two phases of the solution for this study: 
steady-state and time-dependent one. Laminar intra-
vascular flow, IFV, and IFP are obtained in steady-state 
phase. In time-dependent phase, Using the information 
of the previous step, tracer concentrations are achieved 
in tumor and normal tissue. First, geometry of tumor and 
its vascular network are extracted from image-processing 
of a synthetic tumor. Then, the mass and momentum 
equations in the vascular network and interstitial space 
are solved using an iterative approach. The resulting IFP 
and IFV values are then utilized to solve the CDR equa-
tions. Subsequently, the temporary CDR equations are 
solved to obtain different concentrations. COMSOL 
Multiphysics software is used for meshing the geometry. 
Moreover, all the governing equations -including conti-
nuity, Darcy, and CDR equations—are also solved by the 
commercial CFD software COMSOL Multiphysics 5.5 
(COMSOL Inc, Stockholm, Sweden) based on the FEM 
which works by continuous Galerkin approach. Addi-
tionally, the residual square errors are set to 4 orders of 
magnitudes. We have different domains in our simulation 
space: vascular network and interstitial space which are 
connected to each other via transvascular exchange, as 
demonstrated in Additional file 1: Fig. S1.

Abbreviations
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Fig. 10 Computational domain and boundary conditions for intravascular flow
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