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Abstract 

Background: There is a continued need for improved enzymes for industry. β-xylosidases are enzymes employed in 
a variety of industries and although many wild-type and engineered variants have been described, enzymes that are 
highly tolerant of the products produced by catalysis are not readily available and the fundamental mechanisms of 
tolerance are not well understood.

Results: Screening of a metagenomic library constructed of mDNA isolated from horse manure compost for 
β-xylosidase activity identified 26 positive hits. The fosmid clones were sequenced and bioinformatic analysis per-
formed to identity putative β-xylosidases. Based on the novelty of its amino acid sequence and potential thermosta-
bility one enzyme (XylP81) was selected for expression and further characterization. XylP81 belongs to the family 39 
β-xylosidases, a comparatively rarely found and characterized GH family. The enzyme displayed biochemical charac-
teristics  (KM—5.3 mM;  Vmax—122 U/mg;  kcat—107;  Topt—50 °C;  pHopt—6) comparable to previously characterized gly-
coside hydrolase family 39 (GH39) β-xylosidases and despite nucleotide identity to thermophilic species, the enzyme 
displayed only moderate thermostability with a half-life of 32 min at 60 °C. Apart from acting on substrates predicted 
for β-xylosidase (xylobiose and 4-nitrophenyl-β-D-xylopyranoside) the enzyme also displayed measurable α-L-
arabainofuranosidase, β-galactosidase and β-glucosidase activity. A remarkable feature of this enzyme is its ability to 
tolerate high concentrations of xylose with a  Ki of 1.33 M, a feature that is highly desirable for commercial applications.

Conclusions: Here we describe a novel β-xylosidase from a poorly studied glycosyl hydrolase family (GH39) which 
despite having overall kinetic properties similar to other bacterial GH39 β-xylosidases, displays unusually high product 
tolerance. This trait is shared with only one other member of the GH39 family, the recently described β-xylosidases 
from Dictyoglomus thermophilum. This feature should allow its use as starting material for engineering of an enzyme 
that may prove useful to industry and should assist in the fundamental understanding of the mechanism by which 
glycosyl hydrolases evolve product tolerance.
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Background
Lignocellulosic plant biomass could be a cheap and abun-
dant feedstock for applications including biofuel produc-
tion, bioplastics, the paper and pulp industry as well as 
pharmaceutical production [1–3]. The three main com-
ponents of plant biomass are cellulose, hemicellulose, 
and lignin of which hemicellulose and lignin can take a 
variety of chemical forms depending on the plant species 
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and, in general, are the plant cell wall components most 
recalcitrant to hydrolysis. Enzymatic degradation, follow-
ing physicochemical disruption (steam explosion, high/
low pH treatment or solubilization with ionic liquids), 
could offer a more efficient, environmentally friendly 
approach to assist in the degradation of plant biomass. 
Much research has focused on the discovery of more 
efficient enzymes to degrade cellulose and hemicellu-
lose to fermentable sugars. Additionally, there is a need 
to discover enzymes with improved tolerance to indus-
trial process conditions such as tolerance to hydrolysis 
by-products (inhibitors such as furfural, hydroxymethyl 
furfural), end products (glucose and xylose) and sol-
vents [4]. Thermostable enzymes have the added advan-
tage that they can retain activity at high temperatures 
reducing the need to cool feedstocks following physico-
chemical treatment to open the plant structure, prior to 
enzymatic hydrolysis [5]. The complete breakdown of lig-
nocellulose requires the consortium of microorganisms 
which produce cellulases, hemicellulases and ligninases. 
In industrial processes, this is achieved through enzy-
matic cocktails which contain different enzymes that act 
on different components of lignocellulosic substrates [6]. 
Multi-substrate enzymes which hydrolyse different ligno-
cellulosic substrates could offer a cost-effective fermenta-
tion process. The discovery of novel enzymes that might 
meet the needs of industry can be limited by traditional 
culture-based or mutation techniques [7]. Metagenomics 
is the direct interrogation of total DNA from an environ-
mental sample without the need for culturing of the host 
organism. This tool provides a powerful approach for 
functional screening and identification of novel biocata-
lysts from unculturable or uncultured microorganisms 
from any environment [8].

Hemicellulose is a heteropolymer consisting of β-1,4 
linked xylose monomers (xylan) as a major component 
with either arabinose, glucuronic acid, acetyl, feruloyl, 
and p-coumaryl side chain groups depending on the 
source material [9]. Hydrolysis of the xylan backbone 
requires the action of multiple enzymes which include 
xylanase (EC 3.2.1.8) and β-xylosidase (EC 3.2.1.27) that 
attack the xylan backbone, while side chain hydrolysis 
requires α-L-arabinofuranosidases (EC 3.2.1.55) and glu-
curonidase (EC 3.2.1.34) as they make the xylan backbone 
accessible to degradation [10]. In industry, β-xylosidases 
catalyse the final rate limiting step to release fermentable 
sugars from hemicellulose for use by microorganisms in 
large scale fermentations [11]. These applications include 
deinking of recycled paper [12], processing wood pulp to 
improve bleachability and brightness [13, 14], improv-
ing bread dough baking and nutritional quality [15], 
reducing the bitter flavour caused by xylosylated com-
pounds in grape juice during extraction and liberation 

of aroma derived from xylosylated compounds of grapes 
during wine making [16] as well as hydrolysis of xylan 
to D-xylose for reduction to xylitol [17]. β-xylosidases 
belong to several glycoside hydrolase families (GH3, 
GH30, GH39, GH43, GH53, GH54, GH116 and GH120) 
with all of them functioning as retaining hydrolases 
except the GH43 family which are inverting enzymes 
[18]. Only 12 GH39 β-xylosidases enzymes present in 
the CAZY database have been characterized and of these 
few have been identified through metagenomic screens 
[19–23], making these rather rare enzymes. Patenting 
of at least one of these enzymes suggest some useful-
ness in certain applications (WO/2018/185150). Here, we 
report the basic biochemical characterization of a novel 
GH39 family β-xylosidase (XylP81) identified through 
functional screening of a horse manure compost derived 
metagenomic library.

Results and discussion
Metagenomic library screening, sequence identification 
and analysis
A mDNA library of ~ 20,000 fosmid clones was generated 
and subjected to high throughput screening to detect 
β-xylosidase activity. A total of 26 positive hits were iden-
tified, and of these, the insert sequences for 18 clones 
that showed highest β-xylosidase activity were deter-
mined. The fosmid insert of clone P81G1 assembled as 
two fragments (15.34 kb and 12.10 kb). At the nucleotide 
level, a portion (8429 bp-14123 bp) of the 15 kb P81G1 
insert was most similar to regions on the Caldilinea aer-
ophila DSM 14535, Roseiflexus castenholzii DSM 13941 
and Thermotoga sp. RQ7 genomes with 67% identity 
(Fig.  1). Although this region showed high similarity to 
oligopeptide and nickel transport systems, the region 
likely covers a putative oligosacchraride transport system 
as demonstrated for Thermotoga maritima [24–26]. The 
similarity at a nucleotide level to members of the Chloro-
flexi and other thermophilic species suggests that the 
DNA fragment may have originated from a thermophile. 
One ORF on this genomic fragment displayed clear simi-
larity to a β-xylosidase (xylP81; 1368  bp, 52.4  kDa) and 
no other easily identifiable glycoside hydrolases could 
be detected. Apart from the xylosidase located imme-
diately downstream of these transporters, there appears 
to be no further synteny between these genomic lay-
outs. The amino acid sequence coded for by xylP81 was 
most similar to an “AraC family transcriptional regula-
tor Chloroflexi bacterium” (HDU42522; Id. 80%: 382aa/
Pos. 88%: 424aa), again showing the limitations of auto-
mated annotation, while the closest hit to an annotated 
β-xylosidase was a β-xylosidase from an Anaerolineaceae 
bacterium (MAU09869; Id. 75%: 381aa/Pos. 85%: 433aa). 
The absence of a secretion signal together with being 
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found in an operon with putative xylooligosaccharide 
transporters under control of a LacI-like regulator, argues 
for this xylosidase being intracellular. The dbCAN2 
server classified XylP81 as belonging to the GH39 fam-
ily. Modelling and alignment of the XylP81 sequence with 
characterized GH39 enzymes showed that the catalytic 
residues (Glu162, His235 and Glu284; XylP81 number-
ing) are conserved as for the xylosidases from this fam-
ily (Additional file  1: Fig. S3B). The residues proposed 
to be involved in substrate recognition (His60, Phe117, 
Asn161, Phe168, Tyr237, Trp322, Phe328, Glu330; 
XylP81 numbering) were also conserved, except for 
Tyr283 replaced by a proline (Pro289) in XylP81. Mod-
elling shows that His241, part of the β-hairpin catalytic 
loop and not present in other GH39 β-xylosidases, over-
laps the position taken by Tyr283 possibly substituting 
for this residue. As noted elsewhere [27, 28], overall, the 
catalytic site and substrate binding pockets are highly 
conserved, and these structures align very well. Thus, it 
should be expected that catalysis by XylP81 also oper-
ates by the catalytic mechanism (double displacement) 
described for GsXynB1 from G. stearothermophilus and 
TsXynB from Thermoanaerobacterium saccharolyticum 
[29–31].

The conservation of most of the catalytic and substrate 
recognition residues made the enzyme less appealing to 
characterize as the biochemical characteristics might be 

expected to be the same as for previously characterized 
enzymes. However, overall amino acid identity and simi-
larity compared with characterized GH39 xylosidases 
showed highest identity (34%) and similarity (58%) to 
enzyme to TsXynB. Additionally, phylogenetic assess-
ment (Additional file  1: Fig. S2), demonstrated that this 
enzyme occupied a unique position in the tree and did 
not cluster closely with previously characterized GH39 
representatives. Through this analysis it also became 
apparent that the “xyl3” enzyme described by [21] 
belongs to the GH39 family as opposed to the GH1 fam-
ily. The unique sequence space occupied by the enzyme, 
together with its prospective thermophilic origins, 
prompted us to investigate XylP81 further.

Biochemical characterization of XylP81
Thermostability, temperature and pH optimum
The recombinant XylP81 protein displayed a broad tem-
perature optimum profile with highest activity at 50  °C 
(Fig.  3a). Although several thermostable β-xylosidases 
have been described from this family, GH39 enzymes 
do not exclusively derive from thermophiles. XylP81 is a 
moderately thermostable enzyme as it retains 90% activ-
ity after 1-h incubation at 50 °C with a half-life of 32 min 
at 60  °C (Fig.  3e). According to the equilibrium model 
for the effect of temperature on enzyme activity, a broad 
temperature optimum is likely due to a smaller change in 

Fig. 1 BLASTn comparison of the P81G1 fosmid insert to three genomic fragments from Caldilinea aerophila DSM 14535, Roseiflexus castenholzii 
DSM 13941 and Thermotoga sp. RQ7 respectively showing genomic synteny
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enthalpy (ΔHeq) during the transition from active enzyme 
to inactive but non-denatured enzyme [32]. The two 
parameters ΔHeq and Teq, which is defined as the tem-
perature at the midpoint of the transition between active 
and non-denatured inactive enzyme, are properties of the 
active site and the effect of various substrates on these 
parameters for particular enzymes have been demon-
strated [33]. Different substrates can lead to changes in 
ΔHeq which results in broadening of the Topt profile likely 
due to stabilization of the active site in the presence of 
various substrates. The temperature optimum profile may 
therefore partly be the result of the substrate used, and 
we note that several GH39 β-xylosidases display broad 
temperature optima on pNPX. Inspection of the primary 
sequence showed that the C-terminal extension present 
in most GH39 β-xylosidases from extremophiles was not 

present [27, 28, 31]. This suggests that despite the over-
all sequence similarity to members of the Chloroflexi 
and other thermophilic genera, the enzyme likely derives 
from a mesophile. It also suggests that the enzyme is 
monomeric in solution as the C-terminal extension is 
thought to be the primary reason for tetramer forma-
tion in those enzymes which have this quaternary struc-
ture [28, 34]. The pH optimum is 6, similar to the optima 
reported for other GH39 β-xylosidases (pH5—pH7.5) 
with a bell-shaped curve indicating two titratable groups 
at pKa values of ~ 4.6 and 7.4 [30].

Substrate specificity and kinetics
The GH39 family is known to display two main activi-
ties, β-xylosidase and α-iduronidase, and a mul-
titude of secondary activities (transglycosylase, 

Fig. 2 Phylogenetic assessment and comparison of biochemical parameters for XylP81 with characterized members of the GH39 family.  Topt and 
 pHopt data are displayed as raw values. Red triangles indicate bootstrap replicates between 50 and 100%

Fig. 3 Summary of biochemical characteristics of XylP81: A Temperature optimum; B pH optimum; C Xylose inhibition; D Sensitivity to metal ions; E 
Thermostability (black triangle—70 °C, black circle—60 °C, black square—55 °C, black diamond—50 °C); F Michaelis curve using pNPX as substrate
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α-arabinofuranosidase, β-glucosidase and PslG’s unique 
activity). XylP81 showed high specific activity on pNPX 
(122 U/mg) with minor secondary activities includ-
ing α-arabinofuranosidase, β-galactosidase and low 
but detectable β-glucosidase activity (Additional file  1: 
Table S1). It also had detectable activity on beechwood- 
and birchwood xylan indicating low endoxylanase activ-
ity, similar to that described for Geobacillus WSCUF-1 
[35]. The small quantity of reducing sugar detected 
likely comes from the degradation of small amounts of 
xylooligosaccharides present in the substrate. Model-
ling of the XylP81 sequence on the structure of XacXynB 
(QMEAN − 3.80), and comparison of the XylP81 model 
with the structures of CcXynB2, TsXynB and GsXynB1 
(Additional file 1: Fig. S3) showed that, like CcXynB2 and 
XacXynB, XylP81 has the longer α-helix-containing loop 
from the auxiliary domain (Ser399-Glu419) that interacts 
with the catalytic β-hairpin forcing it to adopt an open 
conformation [28, 34]. The KM for XylP81 on pNPX was 
5.3  mM and is in line with what has been reported for 
most bacterial GH39 xylosidases (Figs.  2 and 3f ). Two 
other notable differences between XylP81 and related 
enzymes are Thr166 and Val167 which are either Lys/
Val/Asp or Asn/Glu/Gly/Asp in the other structures, 
respectively. These residues located at the mouth of the 
substrate binding pocket may modify the affinity for nat-
ural substrates and may be the reason for the range of KM 
values observed among them. In XacXynB substitution of 
both positions with the corresponding residues found in 
CcXynB2 (K166D and D167G) resulted in higher KM val-
ues, which was unexpected [28]. The catalytic β-hairpin 
is a highly flexible structure [28] capable of interacting 
with substrate molecules and is a part of the protein that 
has high variability with few conserved residues. These 
two elements may work in unison to form a thumb and 
forefinger arrangement which sense and clamp the sub-
strate thereby contributing to the KM for a particular 
substrate. The kcat for GH39 β-xylosidases spans a wide 
range covering several orders of magnitude owing pre-
dominantly to vastly different specific activities whereas, 
except for TsXynB, the KM values are within an order of 
magnitude (Fig.  2). It therefore seems counter intuitive 
that the residues responsible for kcat in the catalytic site 
are so highly conserved yet the specific activities and 
kcat values span such a wide range, whereas the residues 
responsible for KM are a mixture of highly variable and 
conserved residues, yet their values are far closer. This 
may argue for a dominant role of the conserved resides 
in determining KM. The exceptionally low KM observed 
for TsXynB could be a consequence of the affinity of its 
catalytic β-hairpin for pNPX promoting formation of the 
Michaelis complex. The radical variability of kcat against 
the backdrop of highly conserved catalytic residues needs 

further investigation through mutation and QM/MM 
simulations [36].

Product tolerance
XylP81 shows remarkable tolerance to xylose as it 
retains ~ 40% activity in the presence of 3 M xylose (Ki—
1.33 M), a feature shared with the recently characterized 
GH39 β-xylosidase from Dictytoglomus thermophilum, 
Xln-DT [37] (Fig. 3c). This is not a feature of the GH39 
family that has been extensively explored and the molec-
ular mechanisms by which other glycosyl hydrolases are 
either resistant, tolerant or stimulated by their end prod-
ucts is also not yet understood. A study by [38] looking at 
glucose tolerance in a metagenome-derived GH1 family 
β-glucosidase suggested that subsites in the channel lead-
ing to the catalytic pocket have an affinity for glucose. The 
titration of glucose molecules to subsites instead of the 
catalytic site is proposed to allow the enzyme to operate 
in the presence of even high concentrations of product. A 
number of phenomena such as an increase in KM with an 
increase in product concentration or stabilization of the 
enzyme may all be invoked to explain the high product 
tolerance [39, 40]. Although not determined here, high 
transxylosylation activity could be the reason for appar-
ent high product tolerance, where XylP81 preferentially 
uses xylose instead of water as an acceptor for the xylo-
syl moiety during the catalytic degradation of pNPX [41, 
42]. Transxylosylation is likely also favoured under high 
product concentrations. The enzyme from Geobacillus 
WSCUF-1 has been assayed for its tolerance to product 
inhibition and unlike XylP81, retained only 50% activity 
at 300  mM xylose [35]. Although the crystal structure 
for the GH39 β-xylosidase from Geobacillus WSCUF-1 
is not available the structure for the very closely related 
GsXynB1 has been solved [27]. Comparison of the 
structure from GsXynB1 with models of XylP81 and the 
Xln-DT enzyme did not offer any immediate clues as to 
the nature of improved product tolerance by the latter 
enzymes. A notable difference between XylP81 and pub-
lished structures of GH39 β-xylosidases is an additional 
5 amino acid insertion from residue 192 to 198 also pre-
sent in the Chloroflexi sp. and Anaerolineae sp. enzymes 
which appears to close off one side of the active site cleft 
(Additional file 1: Fig. S4).

Sensitivity to metal species
When testing the effect of cations on the activity of 
XylP81, it was most affected by  Cu2+ and  Ag2+ with a 
57% and 48% decrease in activity respectively following 
incubation in the presence of these metal salts with slight 
improvement (15%) on incubation with  Mn2+ (Fig.  3d). 
Similarly, three other GH39 β-xylosidaes (Geobacil-
lus WSUCF-1, Xln-DT and CcXynB2) were reported 
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to lose between 60 and 77% activity in the presence of 
 Cu2+ [35, 42–44]. Xln-DT displayed 15% increase in 
activity on incubation with 5  mM  Mn2+ whereas there 
was no improvement at 1  mM. CcXynB2 activity was 
reduced (33%) when incubated with 2  mM  Mn2+ while 
the Geobacillus WSUCF-1 enzyme showed no improved 
activity when assayed at 1  mM  Mn2+. For JB13GH39 
 Cu2+ had a positive effect on activity as did  Mn2+ with 
a 15% improvement while for Xyl21 both these metal 
ions reduced activity [23, 42]. The large negative elec-
trostatic potential observed for the active sites of these 
enzymes should attract positively charged ions [31]. The 
increase in activity with  Mn2+ is in line with the expected 
role for this non-redox-active metal which likely makes 
functional groups more electrophilic (more acidic) or 
stabilizes charged intermediates/transition states [45]. 
Coordination of a cupric ion  (Cu2+), the most competi-
tive metal in the Irving-Williams series, by glutamate 
and histidine residues in the active site may be respon-
sible for the reduced enzyme activity in the presence of 
this metal [46]. Additionally, differences in co-ordination 
geometry may be responsible for the differences in activ-
ity between different metal species, as has been observed 
in other enzymes such as GlxI from Clostridium acetobu-
tylicum [47]. These metals should not pose a problem for 
the enzyme in vivo as the cytoplasm is a metal-regulated 
environment but may have implications for their use in 
commercial settings.

Conclusion
Here we describe a novel GH39 β-xylosidase isolated 
from a compost metagenome. Comparison of its basic 
biochemical characteristics to those that have been 
described shows just how remarkably flexible amino acid 
compositions can be yet resulting in highly similar enzy-
matic activities. The high tolerance of XylP81 and Xln-
DT to xylose should allow for the identification of the 
features that enable this and make these enzymes good 
starting points for engineering of enzymes that may be 
commercially desirable.

Materials and methods
Metagenome library construction, screening, sequence 
identification and phylogenetic assessment
Horse manure compost was collected in March 2013 
from a commercial compost farm (Master Organ-
ics, Philippi, Cape Town) located in the Western Cape 
Province of South Africa (− 34.048340, 18.529347). The 
compost source material consisted of an unspecified 
mix primarily composed of horse manure, wood chips 
and sawdust with a maximum measured temperature of 
70 °C. Metagenomic DNA (mDNA) was extracted using 
the chemical lysis method as previously described [48]. 

Each extraction was performed using 1.6  g compost 
material re-suspended in 5 ml extraction buffer (100 mM 
Tris–HCl, pH 8.0; 100  mM EDTA, pH 8.0; 100  mM 
sodium phosphate, pH 8.0; 1.5  M NaCl; 1% CTAB). A 
volume of 20  μl proteinase K (10U) was added and the 
mixture incubated at 37 °C for 30 min. Cell lysis was per-
formed through the addition of SDS (2% w/v) and PVPP 
added to a final concentration of 0.5% w/v. The sample 
was further incubated at 65  °C for 2  h. Debris was pel-
leted by centrifugation at 6000×g for 10  min at room 
temperature. The supernatant was carefully removed 
and added to 1 volume phenol:chloroform:isoamyl alco-
hol (25:24:1) followed by gentle inversion of the tube and 
centrifugation at 16,000×g for 10 min. The aqueous phase 
was removed, added to an equal volume of chloroform 
and transferred to micro-centrifuge tubes. Following cen-
trifugation at 16,000×g for 10  min, the aqueous phase 
was again recovered, and nucleic acid was precipitated 
with 1 volume 100% isopropanol at room temperature 
overnight. Nucleic acids were pelleted by centrifugation 
at 16,000×g for 20 min at room temperature. The super-
natant was discarded, and the pellet was washed with ice 
cold 70% v/v ethanol, air-dried and re-suspended in an 
appropriate volume of 1 × TE buffer. The extracted DNA 
was further purified as previously described [49]. Briefly, 
500  μl of mDNA was mixed with 500  μl of 2% molten 
(55 °C) agarose gel prepared in TAE buffer. The mixture 
was allowed to solidify in a 1 ml plastic syringe of which 
the tip was cut off. The solidified agarose-plug contain-
ing compressed metagenomic DNA was removed from 
the syringe and placed in a 15 ml centrifuge tube contain-
ing 80% formamide and 0.8 M NaCl in 20 mM Tris–HCl 
buffer (pH 8.0). The plug was washed by gently inverting 
the tube several times for 1 h. Following incubation, the 
formamide solution was replaced with fresh solution, and 
the plug was incubated overnight at room temperature 
with gentle agitation. The agarose plug was embedded at 
the top of a 1% low meting point (LMP) agarose gel and 
mDNA was electrophoresed for 3 h at 70 V. High-molec-
ular weight (> 23  kb) DNA was excised from the LMP 
agarose. The agarose plug was transferred to a sterile 2 ml 
microfuge tube and incubated at 70 °C for 10 min to melt 
the agarose. This was followed by additional incubation 
at 42 °C to equilibrate the mixture. DNA-agarose mixture 
was treated with agarase (Fermentas) at 1U of enzyme 
per 10 mg of agarose followed by gentle mixing and incu-
bation at 42 °C for 2 h. The reaction was heat inactivated 
at 70 °C for 10 min followed by centrifugation at 9000×g 
for 10 min. Supernatant was removed, and DNA was pre-
cipitated by adding 2.5 volumes of absolute ethanol and 
0.1 volume of sodium acetate (pH 7.0), followed by incu-
bation at − 20 °C overnight. mDNA was pelleted by cen-
trifugation at 16,000×g for 30 min.
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An mDNA library was constructed using the Copy-
Control™ FosmidLibrary production kit (Epicentre) 
according to the manufacturer’s guidelines. Extracted 
high-molecular weight mDNA was end-repaired using 
End-It™ DNA end repair kit (Epicentre) and purified 
by Phenol:Chloroform:Isoamyl extraction followed by 
EtOH/Na-Acetate precipitation overnight at − 20 °C. Fol-
lowing purification, the DNA was ligated to the Copy-
Control pCC1Fos™ vector and packaged using MaxPlax™ 
Lambda phage extract. Following transfection into E. 
coli-EPI300-T1R the library titre was determined and the 
library diluted to produce aliquots of 1  ml with ~ 1000 
transformants per aliquot. These were stored at − 80  °C 
until use.

Approximately one thousand clones were plated per 
Q-tray (Corning Inc) and a Genetix QPix2-XT automated 
colony picker was used to transfer individual clones into 
96-well microplates, with each well containing 50 μl LB 
broth supplemented with 12.5  μg/ml chloramphenicol, 
2.5 mg/ml pNPX and 0.02% (w/v) L-arabinose for fosmid 
copy number amplification. The microplates were sealed 
with breathable sealing membrane (Sigma, USA) and 
cultured at 37 °C overnight with shaking. Positive clones 
were identified by change of LB broth colour to orange/
yellow. Following identification of positive clones, glyc-
erol was added to a final concentration of 20% v/v and the 
plates were stored at − 80 °C.

Insert DNA sequences for fosmids of interest was 
determined through next generation sequencing using 
an Illumina MiSeq. Sequencing libraries were prepared 
using the Nextera XT library prep kit and sequenced 
using a V2  500cycle reagent kit with a 15% phiX spike 
as per manufacturers’ recommendation. This resulted 
in paired end sequences (2 × 250  bp). Sequences were 
assembled using CLC Genomics Workbench version 
7.5.1. and contigs were annotated using Prokka v1.1.2 
[50] through the KBase [51] online analysis platform.

Genomic synteny and nucleotide level comparison 
of contig P81G1 with related sequences was performed 
using Easyfig with the following parameters: Min iden-
tity value 20, E-value 1 ×  10−10 and Min length 40 [52]. 
The deduced protein sequence of XylP81 was analysed 
using the dbCAN2 server [53] to identify the glycoside 
hydrolase (GH) family. Multiple sequence alignments 
were performed using MUSCLE, viewed and edited in 
AliView [54, 55]. Phylogenetic inference was performed 
according to [56] using the amino acid sequences of char-
acterized bacterial and archaeal enzymes in the CAZY 
database together with selected top BLASTp hits from 
the NCBI database (uncharacterized enzymes in Fig. 3). 
For XylP81 related sequences the AraC-like domain, 
found at the N-terminal of some GH39 xylosidases was 
removed, prior to alignment. Maximum likelihood trees 

were constructed using PHYML on the ATGC server 
(http:// www. atgc- montp ellier. fr/ phyml/). Trees were vis-
ualized and annotated using iTOL [57]. Modelling of the 
XylP81 structure was performed using SWISS-MODEL 
(https:// swiss model. expasy. org/) with the Xanthomonas 
axonopodis pv. citri GH39 β-xylosidase XacXynB struc-
ture (6uqj) as template (Additional file 1: Figure S3) and 
structures visualized in PyMol 2.0.7 (Schrödinger, LLC).

Expression vector construction, protein expression 
and purification
The P81 gene product was synthesized and cloned into 
pET21a(+) by Biomatik (https:// www. bioma tik. com/). 
For protein production, inoculated broth cultures (50 ml 
in a 250  ml flask) were cultured at 37  °C until  OD600nm 
of 0.5–0.6 was reached. Protein expression was induced 
through addition of isopropyl-β-D-thiogalactopyranoside 
(IPTG) to a final concentration of 0.5 mM and cultured 
overnight at 37  °C with shaking (150  rpm). Cells were 
harvested by centrifugation at 4  °C, 3265×g for 5  min. 
The pellet was resuspended in 20  mM Tris–HCl (pH 
7.9), 50  mM NaCl and sonicated on ice using a Bande-
lin Sonopuls HD 2070 (58% power, 5 cycles for 30 s). The 
sonicated cell debris was collected by centrifugation at 
4  °C, 13 000×g for 20 min. The soluble fraction was fil-
tered through a 0.45 µm syringe filter and purified using 
nickel affinity chromatography. The purity of the protein 
was analysed on a 12% SDS-PAGE stained with Coomas-
sie (Additional file 1: Figure S1). The protein was concen-
trated using an Amicon® Ultra-15 centrifugal filter device 
with a 50 kDa nominal molecular weight cut off and the 
concentration determined using the Bradford method 
[58].

Enzyme assays
The hydrolysis of chromogenic substrates pNPX (Sigma 
Aldrich) was used to measure the enzyme activity of 
XylP81. The standard reaction mixture consisted of 240 
µL of 2 mM substrate in 50 mM sodium phosphate buffer 
(pH 6) and 0.5 µg of purified enzyme. The reaction was 
incubated at 37 °C for 20 min and terminated by the addi-
tion of 1 mL, 1 M  Na2CO3. The amount of p-nitrophenol 
product was determined by measuring the absorbance at 
410  nm using a microplate spectrophotometer (SPEC-
TROstar Nano, BMG LabTech UK). One unit (U) of 
enzyme activity was defined as the amount of enzyme 
that releases 1 µmol of p-nitrophenol per minute per mil-
ligram of protein.

The optimum pH for both enzymes was determined 
in a pH range of 3–9 using three different buffer sys-
tems under standard assay conditions. The buffers used 
were 50 mM citrate phosphate buffer (pH 3–5), 50 mM 
sodium phosphate (pH 6 and 7) and 50  mM Tris–HCl 

http://www.atgc-montpellier.fr/phyml/
https://swissmodel.expasy.org/
https://www.biomatik.com/
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(pH 8 and 9). A Gaussian distribution was fit to this 
data to determine the  pHopt. The optimum tempera-
ture  (Topt) was determined by incubation of the enzyme 
reaction at various temperatures (30, 40, 50, 60, 70 and 
80 °C) in 50 mM sodium phosphate (pH 6) and enzyme 
activity was measured as described above. The thermo-
stability of the enzyme was determined by incubation of 
the enzymes at 50 °C, 55 °C, 60 °C and 70 °C for 1 h. An 
aliquot of enzyme was removed and assayed for activity 
every 10 min until the 1-h time point was reached at each 
temperature. The effect of xylose on the activity of XylP81 
was evaluated by assaying the enzyme in the presence of 
various concentrations of the xylose (0.1 M, 0.2 M, 0.4 M, 
0.5 M, 1 M, 2 M, and 3 M). A one phase decay curve was 
fit to this data in GraphPad Prism version 8.2.1 (Graph-
Pad Software, Inc., San Diego, CA, USA). The effect of 
metal ions was evaluated by measuring enzyme activity 
of XylP81 with the addition of metal salts into the reac-
tion mixture at a final concentration of 5  mM. The sul-
phate salts of all metals were used with the exception of 
 AgNO3,  MnCl2, KCl and Ca(NO3)2.

To generate the Michaelis curve initial velocity of 
enzyme reactions was measured by assaying substrate 
concentrations of 1 mM–20 mM for 20 min with a con-
stant enzyme concentration of 0.5  µg under standard 
assay conditions using pNPX as substrate. Enzyme kinetic 
parameters were determined by non-linear regression 
curve fitting of the Michaelis–Menten equation.

The substrate specificity was investigated using differ-
ent chromogenic pNP-linked substrates which included 
pNPG, pNPX, pNPA, and pNPGal. The activity of the 
purified enzymes was also determined on various polysac-
charides (beechwood xylan, birchwood xylan) by measur-
ing reducing sugars using the DNS method [59]. Briefly, 
10  µg of enzyme was incubated with 900 µL 50  mM 
sodium phosphate buffer at (pH 6) with substrate (1% w/v). 
The reaction was incubated for 30 min at 50 °C and termi-
nated by the addition of 1.5 mL DNS reagent and boiled 
for 10 min. The absorbance was measured at 540 nm and 
the amount of reducing sugars and specific activity was 
determined from standard curves of xylose and glucose.

Abbreviations
DNS: Dinitrosalicylic acid; pNPX: 4-Nitrophenyl-β-D-xylopyranoside; 
pNPG: 4-Nitrophenyl-β-D-glucopyranoside; pNPA: 4-Nitrophenyl-α-L-
arabinofuranoside; pNPGAL: 4-Nitrophenyl-β-D-galactopyranoside; kDa: Kilo 
dalton.
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Additional file 1: Figure S1. SDS-PAGE analysis XylP81 expression. A) 
Lane M: ColorPlus prestained protein ladder, broad range (10-230 kDa); 

lane 1: E. coli-pET21a no insert uninduced; lane 2: E. coli-pETP81 unin-
duced soluble fraction; lane 3: E. coli-pETP81 induced soluble fraction; 
lane 4: E. coli-pET21a no insert induced; lane 5: E. coli-pETP81 uninduced 
insoluble fraction; lane 6: E. coli-pETP81 induced insoluble fraction. B) 
Purified XylP81 following metal affinity chromatography purification. lane 
M: ColorPlus prestained protein ladder. Figure S2. Unrooted maximum 
likelihood phylogenetic tree of characterized GH39 amino acid sequences 
including XylP81, excluding unchracterized and sequences closely related 
to XylP81. Figure S3. A) Alignment of the structures for TsXynB (magenta) 
and GsXynB1 (blue) with a model of XylP81(light green) B) Alignment of 
all published GH39 β-Xylosidase structures with a model of XylP81 based 
on the Xanthomonas axonopodis pv. citri structure (6uqj). Conserved 
residues are shown as sticks. Those involved in substrate recognition are 
coloured orange and catalytic residues are coloured blue. Figure S4. Side 
view of the active site cleft of XacXynB (top panel) compared with that of 
XylP81 (bottom panel)showing the closed of cleft as a consequence of 
the extra five amino acids at the end of alpha helix 7. Modified conserved 
residues are highlighted in pink. Table S1. XylP81 substrate utilization 
compared with characterized GH39 β-xylosidases.
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