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Abstract

Background: To avoid destructive sampling for conservation and genetic assessment, we isolated the DNA of clam
Cyclina sinensis from their feces. DNA electrophoresis and PCR amplification were used to determine the quality of
fecal DNA. And we analyzed the effects of different conditions on the degradation of feces and fecal DNA.

Results: The clear fecal DNA bands were detected by electrophoresis, and PCR amplification using clam fecal DNA
as template was effective and reliable, suggesting that clam feces can be used as an ideal material for noninvasive
DNA isolation. In addition, by analyzing the effects of different environmental temperatures and soaking times on
the degradation of feces and fecal DNA, we found that the optimum temperature was 4 °C. In 15 days, the feces
maintained good texture, and the quality of fecal DNA was good. At 28 °C, the feces degraded in 5 days, and the
quality of fecal DNA was poor.

Conclusions: The clam feces can be used as an ideal material for noninvasive DNA isolation. Moreover, the quality
of fecal DNA is negatively correlated with environmental temperature and soaking time.
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Background
The clam Cyclina sinensis is an economically important
marine bivalve that is abundant and widely distributed
around the maritime coasts of Asia. C. sinensis is a kind
of eurythermal and euryhaline filter-feeding clam, and
its food source mainly includes planktonic microalgae
(Nannochloropsis oculata, Chaetoceros muelleri, Isochry-
sis galbana,etc.) [1, 2] and the remains of organic debris
by filtering water and sometimes opepods, facilitating
the formation of fecal texture. C. sinensis has two hard
and symmetrical shells on both sides, and it will quickly
close the shells to protect itself from damage when it is
stimulated by outside environment. Destructive and

nondestructive sampling methods are often applied in
scientific researches of clam [3, 4]. The former is con-
ducted by taking parts of specific tissue after the experi-
mental animals are dissected directly, whereas the latter
is usually completed by means of a shell opener or a
mini electric drill. Nevertheless, sampling using both
methods will negatively influence the life of clams, even
leading to their death.
Noninvasive sampling is a sampling method for gen-

etic analysis by collecting exfoliated hair, feces, and urine
without having to catch, handle, or even observe the ani-
mals [5]. It has been widely used in the field of conserva-
tion genetics because it is simple and does not harm
experimental animals. At present, noninvasive sampling
methods are being applied to fish and marine mammals
by collecting body surface mucus [6], shedding scales
[7], and feces [8, 9]. Among them, feces can be easily
collected without disturbing or negatively affecting the
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normal life of experimental animals. Therefore, feces are
potentially valuable research materials in noninvasive
sampling. The main component of feces is undigested
food residues, where intestinal epithelial cells adhere to
when they pass through the intestine. Therefore, mito-
chondrial and nuclear genomic DNA can be isolated
from the remaining epithelial cells in the feces [10].
Fecal molecular biotechnology provides a rapid and de-
pendable way of sampling endangered animals [11–14].
In addition, with the development of molecular biology
technology, fecal DNA is extensively used in genetic
biology studies for species identification [15–17], indi-
vidual identification [18–20], sex identification [21–25],
population genetic structure [26–28], and genetic diver-
sity evaluation [29]. However, fecal sampling has some
problems, such as poor fecal DNA isolation quality and
low success rate of PCR amplification [30]. Moreover,
no study has performed fecal DNA extraction on inver-
tebrates, especially shellfish. Studies on terrestrial ani-
mals have found that fecal DNA degradation occurs
with the increase of exposure time [31] and is affected
by many other factors, such as light, temperature, and
humidity [32, 33]. Compared with those of terrestrial an-
imals, the feces of aquatic animals are more vulnerable
due to the external water environment, and their fecal
DNA is easier to degrade. Therefore, to obtain good
quality shellfish fecal DNA, an improved fecal DNA ex-
traction method should be developed, and the optimal
environmental conditions for fecal sampling should be
investigated.
In this study, clam feces was used as an experimental

material to isolate DNA noninvasively. Moreover, the ef-
fects of environmental temperature and soaking time on
the degradation of feces and fecal DNA were analyzed.
The results can be used as a basis for developing nonin-
vasive DNA isolation technology of shellfish and provide
a reference for optimal conditions of fecal sampling, pro-
viding technical support for further research on molecu-
lar biology and conservation genetics of shellfish.

Results
DNA isolation of fresh feces
To determine the quality of fecal DNA, electrophoresis
was conducted, and the foot muscle DNA was chosen as
the positive control. The results showed that all bands of
the fecal DNA were clear but showed a slight tailing
phenomenon (Fig. 1 and Additional file 1: Figure S1),
which was proved by the results of A260/280 (Table 1).
Moreover, the bands of fecal DNA in lanes 2, 4, 5, and 6
were very bright, similar to the foot DNA band (lane F).

PCR amplification
To determine the effectiveness of fecal DNA, PCR amp-
lification was conducted using the specific primers de-
signed on the basis of mitochondrial and nuclear
genomic DNA of C. sinensis. The results revealed that
the band size of fecal DNA was the same as that of foot
DNA and consistent with the expected length of the tar-
get band (Fig. 2 and Additional file 2: Figure S2), which
was also proved by the sequencing results.

Effects of soaking time and environmental temperature
on fecal degradation
Fecal degradation was evaluated by observing changes in
fecal texture using a stereoscope. The fecal texture chan-
ged over time and was influenced by the environmental
temperature. The fresh fecal pellets (0 days) were yellow-
ish green in color and cylindrical. They had a length of
700 μm and diameter of 450 μm (Fig. 3). In fecal samples
stored at 28 °C (Fig. 3a), the surface texture became
loose at 5 days, with filaments growing abundantly. The
filaments grew in large numbers and gradually formed
into microbial micelles. More bacteria attached to the
microbial micelles, eventually forming bacterial micelles.
At 10 and 15 days, the loose feces obviously broke apart,
and the local fecal textures were decomposed. At 20
days, the breakage sites increased, and the fecal pellets
became looser. At 25 days, the fecal pellets developed
into bioflocs framed with filamentous fungi. In fecal

Fig. 1 Agarosegel electrophoresis of fecal DNA. Lane M, DNA marker; lane N, negative control; lane F, foot DNA; lanes 1–6, DNA of fresh
feces. (N=6).
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samples stored at 15 °C (Fig. 3b), some fecal textures
were slightly decomposed on the 10th day. Fecal break-
age sites gradually increased at 15–20 days, and large
cracks were observed at 25 days. In fecal samples stored
at 4 °C (Fig. 3c), the fecal texture was not loose until 10
days and became slightly loose at 15 days. At 20–25 days,
some parts of the fecal pellets were slightly decomposed.

Effects of soaking time and environmental temperature
on fecal DNA degradation
Under different soaking times and environmental tem-
peratures, the degradation degree of fecal DNA was de-
termined by agarose gel electrophoresis. At 28 °C, fecal
DNA degradation occurred at 5 days after soaking the
feces in seawater, but high-quality DNA could still be

isolated from few fecal samples (Fig. 4a and Add-
itional file 3: Figure S3a). At 15 and 20 days after soak-
ing, poor-quality DNA was obtained from fecal samples,
and serious fecal DNA degradation was observed. At
15 °C, good-quality fecal DNA could still be extracted at
10 days after soaking (Fig. 4b and Additional file 3: Fig-
ure S3b); however, the sample degraded to varying de-
grees after 15 days. At 4 °C, high-quality DNA without
tailing phenomenon could still be obtained from fecal
samples at 15 days after soaking (Fig. 4c and Additional
file 3: Figure S3c).

Discussion
Using the modified phenol/chloroform method for fecal
DNA isolation and PCR verification
Feces is a very complex mixture of biotic and abiotic
components. In this study, DNA was extracted from
clam feces, and the quality of fecal DNA was identical to
that of foot DNA. As shown in Fig. 2, four specific frag-
ments of mitochondrial and nuclear genomic DNA from
C. sinensis were amplified by PCR using the fecal DNA
as template. The results suggest that the isolation of
fecal DNA was successful and reliable, which were
proved by sequencing results. Therefore, clam DNA can
be nondestructively isolated from feces. However,

Table 1 DNA quality of fresh feces (N = 6)

Fecal DNA A260/280 Concentration (ng/μL)

1 1.62 24.2

2 1.79 27.3

3 1.59 20.5

4 1.70 24.3

5 1.67 23.6

6 1.77 25.1

Fig. 2 Agarose gel electrophoresis of PCR amplification products. a, PCR amplification products using CsCOXI primer; b, PCR amplification
products using. Cs16S primer; c, PCR amplification products using Cs18S primer; d, PCR amplification products.using Cspds primer; lane M, DNA
marker; lane N, negative control; lane F, PCR amplificationproducts offoot DNA; lanes 1-6,PCR amplification products of fecal DNA(N=6).
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Fig. 3 Fecal textures of samples stored at 28 °C (a), 15 °C (b), and 4 °C (c)

Fig. 4 Agarose gel electrophoresis of DNA isolated from clam feces under different soaking times and environmental temperatures. Samples
stored at 28°C(a), 15°C(b), and 4°C(c). Lane M, DNA marker; lane N, negative control; lane. F, foot DNA of clam; lanes 1–12, fecal DNA.
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differences in the quality of fecal DNA were still ob-
served among different fecal samples, which may be due
to the quantity variance of intestinal cells adhered to
feces. Besides intestinal cells, feces contain undigested
food, digestive enzymes, mucus, and other blockers,
which affect Taq DNA polymerase activity [34–36]. Fur-
thermore, by extracting fecal DNA from diet-restricted
brown bears, Murphy et al. found that the diet has a sig-
nificant effect on the success rate of PCR amplification
using fecal DNA as template [22]. In this study, the suc-
cess rate of PCR amplification using fecal DNA as tem-
plate was 100%. This finding can be explained by two
factors: (i) C. sinensis have special feeding habits (mostly
microalgae), which may cause their feces to contain few
inhibitors to Taq DNA polymerase. (ii) The modified
phenol/chloroform method was effective in isolating
DNA from feces. Taken together, the findings indicate
that the modified phenol/chloroform method is effective
in isolating DNA from feces, and fecal DNA from herb-
ivorous animals can be used as a template for PCR amp-
lification, which is also supported by the findings of
Zhang et al.’s study on fecal DNA of pandas [37].

Degradation of feces and fecal DNA under different
soaking times and environmental temperatures
Bioflocs are composed of microorganisms, protozoa,
algae, filamentous bacteria, and organic matter in water
[38]. With the decomposition of feces into flocs, the mi-
crobial community structure was altered. In the process
of degradation, the structure of fecal pellets became
loose, which increased the contact area with seawater,
thereby increasing the attachments for protozoa and
leading to a looser structure [39]. As shown in Fig. 3,
differences were observed in the rate of fecal texture
changes at different temperatures. The degradation rate
at 28 °C was significantly higher than that at 15 °C and
4 °C after the same soaking time, which was probably
due to the high temperature (28 °C) appropriate for the
growth and reproduction of microorganisms in feces
and improvement of the activity of fecal degradation-
related enzymes [40]. Moreover, fecal degradation was
often accompanied by fecal DNA degradation (Fig. 4),
and the degree of fecal DNA degradation was also af-
fected by the environmental temperature. Similar phe-
nomena were observed in feces of other animals. The
quality of DNA isolated from feces of Canis lupus in
winter remained significantly higher than that in sum-
mer [41]. Moreover, the quality of fecal DNA from ape
was negatively correlated with fecal environmental
temperature [42]. These findings suggest that fecal sam-
pling should be conducted in seasons with low
temperature to obtain good-quality fecal DNA [43–45].
The degradation of feces and fecal DNA was also af-

fected by soaking time in seawater. The longer the

soaking time, the more serious the degradation (Fig. 4).
Several studies suggest that fecal DNA degradation is af-
fected by water. The rate of fecal DNA degradation is
significantly accelerated by rain wash [46], and removing
water from feces can essentially prevent the activation of
nuclease in feces [47]. Moreover, Cyclina sinensis is a
kind of marine shellfish, and its feces are soaked in sea-
water. Seawater is a very complicated multicomponent
aqueous solution containing various organic, inorganic,
dissolved, and suspended substances, which may be the
reason for the degradation of feces and fecal DNA from
clam. Therefore, the fresher the fecal samples collected,
the higher the quality of DNA [48].

Conclusions
In this study, clam feces were used as experimental ma-
terial to isolate DNA noninvasively. The isolation of
fecal DNA was found to be successful and reliable by
PCR amplification. The effects of different environmen-
tal temperatures and soaking times on the degradation
of feces and fecal DNA were investigated. The results
suggest that fresh fecal samples stored at low environ-
mental temperature (~ 4 °C) were beneficial to the isola-
tion of fecal DNA with good quality. This study provides
technical support for further molecular biology research
and conservation genetics research of shellfish.

Methods
Sampling and processing
Healthy clams C. sinensis were collected from a clam farm
in Jiangsu, China. They were cultured in seawater for two
weeks at room temperature and fed with 0.005 g/mL of
Chlorella once a day. Natural seawater was filtered with a
double-layer 500-mesh sieve after precipitation, disinfection,
and aeration for culturing clams and replaced once a day.
Forty-eight healthy clams (body weight, 10.09 ± 2.81 g;

shell length, 3.01 ± 0.38 cm) were randomly selected and
divided into 12 parallel groups (labeled 1 to 12), each
groups containing four clams. Feeding was withheld for
2 days in continuously oxygenated seawater. Thereafter,
the clams were fed with 6 × 105 cells/L of Chlorella until
waste matter (feces) was completely expelled. During
this period, clam defecation was observed every 2 h. The
feces were collected from the bottom of the beaker using
siphon method.

DNA isolation
Total DNA was isolated from clam feces and foot tissue
(used as positive control). Fecal DNA isolation was per-
formed using the phenol/chloroform method in accord-
ance with a previous study of Sambrook [49] with some
modifications as follows:
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1) Place the feces on a 200-mesh silk screen, and wash
it slowly with double-distilled water (ddH2O) to re-
move impurities on the fecal surface.

2) Transfer each 200 mg fecal sample into a new 1.5
mL Eppendorf tube.

3) Add 100 μL ddH2O, blow the feces repeatedly with
a straw to make it homogenate, and then vortex
fully.

4) Centrifuge for 3 min at 800×g, and then transfer the
supernatant into a new 1.5 mL tube. Add 400 μL of
10% SDS and 10 μL of proteinase K into each tube,
and then vortex fully.

5) Incubate the tubes for 1 h in a 65 °C water bath
with occasional shaking (~ 10 min).

6) Add 10 μL of 20 mg/mL RNase, and incubate the
tubes in a 37 °C water bath for 10 min. Centrifuge
for 3 min at 12,000×g, and then transfer the
supernatant into a new 1.5 mL tube.

7) Add an equal volume of ice-cold Tris-saturated
phenol (pH 7.9), and mix upside down and store at
room temperature for 5 min.

8) Centrifuge at 12,000×g for 12 min, and then
transfer the supernatant into a new 1.5 mL tube.

9) Add an equal volume of chloroform, and mix
upside down. Centrifuge at 12,000×g for 10 min,
and then transfer the supernatant into a new 1.5
mL tube.

10) Add an equal volume of isopropanol, mix upside
down, and store at room temperature for 3 min.
Centrifuge at 12,000×g for 12 min, and then remove
the supernatant completely.

11)Wash the DNA pellet twice with 1 mL ice-cold 70%
ethanol.

12) Air dry.
13) Resuspend the DNA pellet in 30 μL of TE buffer,

and then store at − 40 °C before use.

Primer design and PCR amplification
To determine DNA quality, PCR amplification was con-
ducted with primers designed on the basis of mitochon-
drial and nuclear genomic DNA sequences. The

sequences of mitochondrial (COXI and 16S rRNA) and
nuclear genomic DNA (18S rRNA and partial sequence
of nuclear DNA) were retrieved and downloaded from
NCBI (https://www.ncbi.nlm.nih.gov/). PCR primers
were designed by Primer Premier 5.0 software and are
shown in Table 2. PCR amplification was conducted in a
15 μL reaction volume, containing 1.0 μL of DNA tem-
plate, 0.2 μL of Taq (Takara, Dalian, China), 0.8 μL of
primers (including forward and reverse primers), 1.0 μL
of dNTPs, 1.5 μL of 10× buffer, and 10.5 μL of ddH2O.
The PCR amplification procedure was conducted as fol-
lows: initial denaturation at 95 °C for 5 min, followed by
30 cycles of denaturation at 94 °C for 1 min, annealing
for 30 s, extension at 72 °C for 30 s, and final extension
at 72 °C for 10 min. The PCR amplification products
were detected by 1.5% agarose gel electrophoresis and
captured with a gel imaging system (Universal Hood II,
Bio-Rad, USA). The purified PCR products were se-
quenced by Shanghai Map Biotech Co., Ltd. The sequen-
cing results were checked by Chromas software and
blasted by BLAST online software (https://blast.ncbi.
nlm.nih.gov/Blast.cgi).

Effects of soaking time and environmental temperature
on the degradation of feces and fecal DNA
To explore the effects of environmental temperature
and soaking time on fecal texture changes and fecal
DNA degradation, the fecal samples were collected
immediately after the clams defecated. They were
then soaked in clean seawater and stored at 28 °C,
15 °C, and 4 °C. To observe fecal texture changes,
the fecal samples were placed on clean slides, ob-
served, and photographed with a stereoscope (Nikon
SME 1500, Nikon, Japan) at 0, 5, 10, 15, 20, and 25
days after soaking in seawater. Fecal DNA isolation
was conducted using the modified phenol/chloroform
method mentioned above, and the fecal DNA quality
was determined by Ultramicro Nucleic Acid Analyser
(Eppendorf BioPhotometer® D30, Eppendorf,
Germany), electrophoresis, and PCR amplification.

Table 2 Primers and sequences

Primer Sequence (5′–3′) Source Gene ID Product size/bp

CsCOXI F:TGGTGGTTTAACTGGTGTTGTT Mitochondrial DNA 26,898,108 404

R:AAAACACCAAACCACGCTGAG from C. sinensis

Cs16S F:GATCGTACCTGCCCTGTGAT Mitochondrial DNA 26,898,076 548

R:ACCACTCTAGCTTACGCCGA from C. sinensis

Cs18S F:TGCGTTCAAGGTGTCGATGT Nuclear genomic unregistered 581

R:GGGGCCGACATGAAATGAAA DNA from C. sinensis

Cspds F: ACTTCAGAATTCAGAATTCAG Nuclear genomic unregistered 187

R: GTCACGCACAATGTAACG DNA from C. sinensis
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Data analysis
The DNA purity was confirmed by Ultramicro Nucleic Acid
Analyser (Eppendorf BioPhotometer® D30, Eppendorf,
Germany). The DNA and PCR amplification products were
detected by 1 and 1.5% agarose gel electrophoresis respect-
ively, and the gel images were observed and captured with a
gel imaging system (Universal Hood II, Bio-Rad, America).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12896-019-0595-6.

Additional file 1: Figure S1. Agarose gel electrophoresis of fecal DNA.
Lane M, DNA marker; lane N, negative control; lane F, foot DNA; lanes 1–
20, DNA of fresh feces (N = 20).

Additional file 2: Figure S2. Agarose gel electrophoresis of PCR
amplification products Lane M, DNA marker; lane N, negative control;
lane F, PCR amplification products of foot DNA; lanes 1–20, PCR
amplification products of fecal DNA (N = 20).

Additional file 3: Figure S3. Agarose gel electrophoresis of PCR
amplification products from clam feces under different soaking times and
environmental temperatures. Samples stored at 28 °C (a), 15 °C (b), and
4 °C (c). Lane M, DNA marker; lane N, negative control; lane F, foot DNA
of clam; lanes 1–12, fecal DNA.

Abbreviations
C. sinensis: Cyclina sinensis; PCR: Polymerase chain reaction; rDNA: Ribosomal
DNA; rRNA: Ribosomal RNA
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