
METHODOLOGY ARTICLE Open Access

Overview of methodologies for T-cell
receptor repertoire analysis
Elisa Rosati1, C Marie Dowds1, Evaggelia Liaskou2, Eva Kristine Klemsdal Henriksen3,4,5,6, Tom H Karlsen3,7

and Andre Franke1*

Abstract

Background: The T-cell receptor (TCR), located on the surface of T cells, is responsible for the recognition of the
antigen-major histocompatibility complex, leading to the initiation of an inflammatory response. Analysing the TCR
repertoire may help to gain a better understanding of the immune system features and of the aetiology and progression
of diseases, in particular those with unknown antigenic triggers. The extreme diversity of the TCR repertoire represents a
major analytical challenge; this has led to the development of specialized methods which aim to characterize the TCR
repertoire in-depth. Currently, next generation sequencing based technologies are most widely employed for the
high-throughput analysis of the immune cell repertoire.

Results: Here, we report on the latest methodological advancements in the field by describing and comparing the
available tools; from the choice of the starting material and library preparation method, to the sequencing technologies
and data analysis.
Finally, we provide a practical example and our own experience by reporting some exemplary results from a small
internal benchmark study, where current approaches from the literature and the market are employed and compared.

Conclusions: Several valid methods for clonotype identification and TCR repertoire analysis exist, however, a gold
standard method for the field has not yet been identified. Depending on the purpose of the scientific study, some
approaches may be more suitable than others. Finally, due to possible method specific biases, scientists must be careful
when comparing results obtained using different methods.

Keywords: T-cell receptor (TCR), TCR profiling, TCR repertoire, Immune repertoire, Immunogenetics, Immunogenomics,
Vdj, CDR3, Clonotype, Target sequencing

Background
T cell mediated antigen recognition depends on the
interaction of the T-cell receptor (TCR) with the
antigen-major histocompatibility complex (MHC) mole-
cules (Fig. 1a). TCRs are highly diverse heterodimers,
consisting of a combination of α and β chains (αβ TCR)
expressed by the majority of T cells, or γδ chains (γδ
TCR) expressed by T cells in peripheral blood (1–5%)
and T cells found at mucosal sites [1]. Similar to immu-
noglobulins expressed by B cells – membrane bound im-
munoglobulins are often referred to as B-cell receptors
(BCRs) – the TCR chains consist of a variable region,
important for antigen recognition, and a constant region.

The variable region of TCRα and δ chains is encoded by
a number of variable (V) and joining (J) genes, while
TCRβ and γ chains are additionally encoded by diversity
(D) genes [2, 3]. During VDJ recombination, one random
allele of each gene segment is recombined with the
others to form a functional variable region (Fig. 1b). Re-
combination of the variable region with a constant gene
segment results in a functional TCR chain transcript.
Additionally, random nucleotides are added and/or de-
leted at the junction sites between the gene segments.
This process leads to strong combinatorial (depending
on which gene regions will recombine) and junctional
diversity (which and how many nucleotides will be
added/deleted), resulting in a large and highly variable
TCR repertoire, which will ensure the identification of a
plethora of antigens. Additional diversity is achieved by
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the pairing of α and β or γ and δ chains to form a func-
tional TCR [4].
Each TCR chain contains three hypervariable loops in

its structure, termed complementarity determining re-
gions (CDR1–3). CDR1 and 2 are encoded by V genes
and are required for interaction of the TCR with the
MHC complex. CDR3, however, is encoded by the junc-
tional region between the V and J or D and J genes and
is therefore highly variable. It plays an essential role in
the interaction of the TCR with the peptide-MHC com-
plex, as it is the region of the TCR in direct contact with
the peptide antigen. For this reason, CDR3 is often used
as the region of interest to determine T cell clonotypes,
as it is highly unlikely that two T cells will express the
same CDR3 nucleotide sequence, unless they have de-
rived from the same clonally expanded T cell [2, 4].
The sum of all TCRs by the T cells of one individual is

termed the TCR repertoire or TCR profile. The TCR

repertoire can change greatly with the onset and pro-
gression of diseases, which is why scientists are becom-
ing more and more interested in determining the
immune repertoire status under different disease condi-
tions, such as cancer, autoimmune, inflammatory and in-
fectious diseases. For example, Muraro et al. used the
TCR repertoire to analyse the effect of autologous stem
cell transplantation on T cell populations in multiple
sclerosis patients [5]. In cancer, cytotoxic T cells can kill
tumour cells upon recognition of tumour specific anti-
gens. Some studies have tried to identify specific T cell
clonotypes involved in this process by analysing tumour
infiltrating lymphocyte repertoires [6–8].
The main challenge while studying the immune reper-

toire is its diversity. VDJ recombination of the different
TCR genes could theoretically generate between 1015

and 1020 TCR chains. Despite this, the actual diversity
present in a human body is estimated at around 1013

a

b

Fig. 1 Interaction between an antigen presenting cell (APC) and a T cell, and V(D)J recombination. a Interaction between the antigen–major
histocompatibility complex (MHC) and the αβ T-cell receptor (TCR). b V(D)J recombination: During T cell development, the loci that encode T-cell receptor
α and β-chains are rearranged. For both loci, variable (V) and joining (J) gene segments, and an additional diversity (D) gene segment for the β-chain, are
recombined to form the final rearranged TCR DNA sequence. This process also involves the deletion and insertion of nucleotides at the V-D, D-J and V-J
junctions (not shown). Following transcription, the sequence between the recombined V (D)J regions and the gene encoding the constant (C) region is
removed by splicing. The complementarity-determining region (CDR) 3 is encoded by the V (D) J junction, whereas the CDR1 and CDR2 loops are
encoded within the germline V gene
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different clonotypes [9], implying that the afore-
described seemingly random TCR development is
obviously not random at all and is subject to different
constraints. Moreover, while there are TCRs that are
common in the general population, recent high-
resolution studies have shown that the majority of TCRs
is rare (in analogy to common vs. rare genomic variants)
[10, 11]. This is one of the reasons why precise methods
are necessary to properly investigate complete individual
immune-repertoires. In the past decades, different tech-
niques were developed which enabled the study of the
immune repertoire. Monoclonal antibodies allowed the
analysis of specific V gene subgroups by fluorescence
microscopy or flow cytometry, while quantitative poly-
merase chain reaction (PCR) strategies, in parallel with
spectratyping techniques, were able to provide a rather
low-resolution overview of the repertoire [12]. Despite
these methods, for many years technical limitations
made it difficult to create a comprehensive overview of
real human TCR repertoires, until highly specific
methods based on next generation sequencing (NGS)
were developed, facilitating the parallel analysis of mil-
lions of TCR sequences. Nevertheless, it is still difficult
to define a gold standard method, as every available
method has its advantages and disadvantages.
In this article, we provide an overview of the currently

available methodologies for TCR repertoire analysis, and
we also describe the different aspects that a scientist
should consider when choosing the appropriate method
for the research question to be answered. We performed
a small benchmark experiment that comprises some but
not all available protocols for NGS-based immune reper-
toire analysis, and while our benchmark is by no means
comprehensive and exhaustive, our results highlight
some characteristics of the different methodologies and
the approach in general that may serve as a guide for
scientists that are interested and new in the field of
immunogenetics.
Some publications focusing on immune repertoire

profiling are already available and constitute an im-
portant source of information for any scientist inter-
ested in this research area [12–19]. However, direct
comparisons and benchmarks of the most common
methods are scarce.

Choosing the right starting material for TCR profiling
One of the most basic, yet important decisions a scien-
tist should make when choosing a method for TCR ana-
lysis regards the starting material, i.e. whether to use
genomic DNA (gDNA) or RNA. As discussed previously
[14, 20], either starting material has advantages and dis-
advantages. The points in favour of gDNA are the higher
stability and the presence of a single template per cell,
which allows for better quantification of single TCR

clones [21]. However, using gDNA does not provide any
information on the expression level of the genes of inter-
est and may lead to errors in the sequencing results due
to introns, possible residuals of VDJ rearrangements and
interfering priming sites found in the sample. When
using RNA, quantification of single TCR clones is more
challenging as a cell will contain multiple TCR tran-
scripts. Many current methods, however, are designed
for RNA as starting material, as the studied mRNA
contains the final TCR products. Employing RNA poten-
tially allows for sequencing of the entire J and V gene
and it provides information about expression levels.
Also, the quantity of starting material is a factor that
needs to be taken into account. If only low quantities of
starting material are available, this can be a limiting
factor when selecting a suitable method, as some kits re-
quire a minimum input quantity and concentration of
RNA or gDNA.
In general, due to the complexity of the target and the

threat of batch effects that can affect the downstream
data analysis, it is essential to ensure that the processing
of all samples is as uniform as possible, for example by
using the same concentration of starting material and
trying to have a comparable number of reads for each
sample [22].

TCR sequencing
In this article, we focused on the latest high-throughput
sequencing (HTS) methods currently available for TCR
repertoire profiling. The two options that we discuss are
bulk sequencing of pooled immune cell populations or
approaches allowing the analysis at the single cell level.
We chose to concentrate on protocols for Illumina se-
quencing platforms, as this is the most widely estab-
lished technology. Nonetheless, methods compatible
with IonTorrent [23–25] and Roche 454 [26–28] exist.
While both methods for the analysis of single cells and

cell populations (“bulk methods”) are available, we
mainly focused on the latter, which are more commonly
used to study TCR diversity and compare distinct reper-
toires in larger cohorts. The main disadvantage of bulk
sequencing is that it can only provide information about
the frequency of single TCR chains, but not their pairing.
Single cell approaches are therefore becoming more and
more important in immune repertoire studies, as they
can accurately identify the pairs of the two TCR chains
(αβ, γδ) at the cellular level, bringing repertoire analysis
to a higher level of complexity. It is also the concrete
chain pair that more accurately reflects the biological in
vivo function. However, single cell sequencing ap-
proaches are currently more expensive, they cover often
only a limited number of cells, as compared to bulk ap-
proaches, and, they require fresh material for the isola-
tion and sorting of live cells, which is not always
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available especially when dealing with human diseased
material. Some of the aspects we will consider in follow-
ing paragraphs include the processing of RNA or gDNA
samples prior to sequencing (library preparation) and
choosing the adequate sequencing depth – the number
of replicate reads necessary to efficiently detect the se-
quences of interest.

Bulk methods
There are different aspects to consider when choosing
population-based TCR analysis methods. The methods
we are going to compare differ in many aspects, from
the type of starting material (gDNA or RNA) for the li-
brary preparation approach and the sequencing method.
Some commercial companies offering immune reper-
toire analyses services are listed in Table 1. Our com-
parison mainly considers different library preparation
methods, for which we will also discuss the different po-
tential biases.

Choosing target sequences: Chains and CDR regions
Several companies offer library preparation and sequen-
cing services for all TCR chains, but α chain and β chain
remain the most common targets, as αβ T cells constitute
the majority of the total T cell population [29]. Historic-
ally, the β chain was the main target studied due to its
higher combinatorial potential compared to the α chain,
which is due to the presence of the D gene component
[14]. The β chain is also unique in each single cell,
whereas it is possible that two α chains are expressed by
the same cell, increasing the level of complexity [30]. γδ

T-cell receptors are not widely studied, as γδ T cells only
account for a small proportion of the total T cell popula-
tion. The overall diversity of γδ TCRs is lower, compared
to αβ TCRs, and there is an abundance bias based on
which anatomical location is being analysed, as γδ T cells
are found at higher frequency at mucosal sites. Therefore,
they have been of less interest as peripheral blood samples
are most widely studied [1]. PCR-based methods may
amplify α and β chains simultaneously, but they are often
separated and treated as two different samples in the last
steps of the library preparation and during sequencing.
This has been found to increase the precision and specifi-
city of the outcome [31–33].
The CDR3 region is the preferential target of many

TCR repertoire studies, due to its relevance for TCR-
peptide interaction. To date, CDR1 and CDR2 have
not attracted the same attention from the scientific
community, because they do not directly interact with
the antigen. However, CDR1 and CDR2 play an im-
portant role in making contact with the MHC mol-
ecule and thus influence the sensitivity and affinity of
the TCR binding [34, 35]. Being aware of the se-
quence of the entire transcript, including CDR1 and
CDR2, may be a great advantage for modelling the
TCR structure and its binding properties. Not all
methods are able to detect CDR1 and CDR2. This
limitation applies especially to protocols using mul-
tiple primer sequences. Indeed, many allele-specific
primers are designed in different positions of the V
genes, often eliminating the possibility of sequencing
outside CDR3.

Table 1 Exemplary companies providing immune repertoire products and services
Company Service/Kit Starting material Library preparation

approach
Chains CDR regions Organism Sequencing platform

and length (bp)

BGI (Shenzhen,
China)

Service gDNA
RNA

Mplex-PCR:
primers V- C genes

TCRαTCRβ
BCRH, BCRL

CDR3 Human Illumina:
HiSeq2000/2500
(100 × 2 bp)
MiSeq
(150/300 × 2 bp)
Roche454

RNA 5’RACE TCRα, TCRβ CDR1
CDR2
CDR3

Adaptive
Biotechnologies-
ImmunoSeq
(Seattle, USA)

Service
Kit

gDNA
cDNA

Mplex-PCR:
primers V-J genes

TCRα, TCRβ, TCRδ, TCRγ,
BCRH, BCRL, BCRK

CDR3 Human
Mouse

Illumina:
HiSeq, MiSeq

iRepertoire, Inc.
(Huntsville, USA)

Service
Kit

gDNA Mplex-PCR:
primers V-J genes

TCRβ CDR3 Human Illumina:
HiSeq, MiSeq
(100/150 × 2 bp)

RNA Mplex-PCR:
primers V-C genes

TCRα, TCRβ, TCRδ, TCRγ,
BCRH, BCRL

CDR2
CDR3

Human
Mouse

Illumina:
HiSeq, MiSeq
(100/150/250 × 2 bp)
Roche454 (500 bp)

Clonotech
Takara Bio USA, Inc.
(Mountain View, USA)

Kit RNA SMART technology (5’RACE) TCRα, TCRβ CDR1 CDR2 CDR3 Human
Mouse

Illumina:
HiSeq, MiSeq
Used by company
for validation:
MiSeq (300 × 2 bp)

Many different features are available; these can be combined in more than one way. Choice of primers, sequencing platform and depth may vary depending on starting
material and desired outcome. Adaptive Biotechnologies only uses cDNA for limited applications. The company applies primer concentration controls for amplification
bias correction and different options for sequencing depth are available (survey, deep, ultra-deep, max depth). iRepertoire may offer sequencing of the CDR2 region, de-
pending on the chosen sequencing length
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Library preparation approach
We regard the library preparation approach as one of the
key features to be considered when selecting a method.
There are only a few techniques widely used for bulk ana-
lysis (Fig. 2). Most published methods are a variant of one
of these approaches, the majority of which are PCR-based.
Immune repertoire extrapolation from data generated
through transcriptome sequencing is also feasible [36];
even though to date it has not been widely used and, given
common transcriptome sequencing depths, this approach
may be limited and reveal only a fraction of the TCR di-
versity as compared to a target-specific method.

Multiplex PCR
Given the diversity of the target, multiplex PCR ap-
proaches are among the most widespread, also offered as
customizable service or kits by companies such as Adaptive
Biotechnologies, BGI and iRepertoire [5, 31, 32, 37–41].
Primers for the J alleles or the constant region of the TCR
α and β chains are used together with a mix of primers for

all known V alleles. This results in a specific amplification
of the TCR transcript across the CDR3 region. The multi-
plex approach can be used for both gDNA and RNA and
the published protocols assure no cross-primer interference
during amplification. However, this method cannot detect
new V alleles variants due to the fixed set of primers used.
Furthermore, multiplex PCR methods are subjected to
amplification biases [42], which lead to better amplification
of some alleles compared to others, thereby distorting the
relative abundances of the resulting products. It is possible
to correct for this kind of error by using a specific experi-
mental design including adjustment of primer concentra-
tions [43] and/or using molecular barcoding [44].

Target enrichment
A targeted enrichment method is available using e.g.
Agilent’ RNA baits for capturing TCRs of αβ T cells. For
starting material, gDNA or RNA is first processed with a
standard sequencing library preparation kit (i.e. Illumina
TruSeq or SureSelectXT from Agilent), followed by

Fig. 2 Exemplary workflow of three principal methodologies for TCR library preparation. The figure depicts a simplified workflow of the library
preparation procedure using multiplex PCR, targeted in-solution enrichment and 5’RACE-switch-oligo nested PCR. Multiplex PCR is suitable for both RNA
and gDNA sequencing. Samples undergo cDNA synthesis and 1 or more PCR steps followed by adaptor ligation and sequencing. While the forward
primers for cDNA synthesis are designed to cover all known V genes for both starting materials, the location and number of the reverse primers differs,
due to introns in DNA. Target enrichment, also applicable to both gDNA and RNA, is preceded by a standard library preparation including fragmentation
for gDNA or mRNA purification for RNA, followed by end-repairing, A-tailing and finally adaptor ligation. The enrichment of target sequences is then
performed using RNA baits complementary to the sequence of interest. The RNA baits hybridize with molecules in the library, which are then retrieved
using magnetic beads and can undergo further amplification before sequencing. Nested PCR based on the 5’RACE and switch-oligo approach (only for
RNA) makes use of the incorporation of an adaptor molecule at the 5′ end of the cDNA during cDNA synthesis. The forward primer for a subsequent PCR
is designed to bind to the 5′ adaptor sequence, while the reverse primer is designed to bind to the C-region of the transcript. Hence, only one primer pair
is required to cover the complete spectrum of possible V genes. Subsequent nested PCRs performed in the same fashion may increase outcome specificity.
Finally, adaptor ligation is performed. The procedures showed in this picture constitute only an example of the different available methods

Rosati et al. BMC Biotechnology  (2017) 17:61 Page 5 of 16



incubation of the samples with custom designed RNA
baits. These RNA baits, which are complementary to the
sequences of interest and tolerate a few different bases
compared to the target, hybridize with the gDNA/cDNA
target, allowing then for capturing it, and submitting the
captured gDNA/cDNA to a further amplification step of
the wanted sequences. This method, among other ap-
proaches, requires fewer PCR cycles and is thus less sus-
ceptible to PCR bias. Also α and β chains can be
processed together, while it is suggested to separate the
processing of the two chains for other methods in order
to increase the quality of the outcome [45, 46].

5’RACE cDNA synthesis and nested PCR
For RNA samples, rapid amplification of 5′ complemen-
tary DNA ends (5’RACE) [47] employing the template-
switch effect is becoming a gold standard for bulk TCR
analysis [28, 48–50]. This method, marketed by Clono-
tech as “SMART” technology, relies on the terminal
transferase activity of the reverse transcriptase enzyme,
which incorporates additional nucleotides (usually
dCTP) at the 3′ end of the cDNA molecule during the
first strand synthesis reaction. A template-switch oligo-
nucleotide containing an oligo(rG) sequence anchors to
the non-template stretch of the first-strand cDNA,
allowing the reverse transcriptase to switch templates
and to continue replicating to the end of the oligo-
nucleotide [51]. This enables the synthesis of cDNA
strands containing the complete 5′ end of the mRNA,
independent of the carried V allele, which enables cap-
turing of all TCR variants present in the sample, pro-
vided that the integrity of the transcripts is conserved.
Recently, Clonotech developed a commercial kit for
TCR analysis using the afore-described template-switch
technology. cDNA synthesis is carried out using primers
against a small proportion of the target TCR mRNA
transcript, the constant region. Consecutive PCRs may
be carried out using a common adaptor as 5′ primer
and constant region primers for the 3′ end. Ideally, these
primers should be designed on nested sequences of the
constant region in order to increase amplification speci-
ficity. Hence, only one primer set is required per reac-
tion, avoiding the use of multiple primer sets and thus
the associated amplification bias. The PCR products can
be ligated to the appropriate sequencing adaptors and
used for NGS sequencing.

General issues of TCR analysis
Despite the successful adoption and improvements of
the mentioned approaches, every method based on PCR
is still susceptible to a number of errors intrinsic to the
particular technique, namely variable amplification effi-
ciency due to differences in GC content, amplification
stochasticity, template-switching and polymerase errors

[52]. In addition, sequencing errors independent of the
library preparation method used must always be taken
in account. TCR sequencing is particularly vulnerable to
sequencing errors, since a specific TCR may differ from
another by only a single nucleotide. This fact makes it
important to distinguish between PCR errors, sequen-
cing errors and low frequency clonotypes. Thus, differ-
ent techniques have been recently developed to
overcome this issue. These methods comprise the usage
of unique molecular identifiers (UMIs) introduced dur-
ing cDNA synthesis to distinguish between single RNA
molecules and minimize the impact of PCR amplifica-
tion and sequencing errors [53], and specific algorithms
for correction of this particular type of data [54].

Unique molecular identifiers
UMIs deserve special attention. The introduction of UMIs
enabled the determination of the absolute count of RNA
transcripts processed in a sample. UMI sequences, contain-
ing random nucleotides, are inserted into the template-
switch oligonucleotide, which ligates with target molecules
during cDNA synthesis, thereby uniquely barcoding every
cDNA molecule in the sample with a different UMI. During
data analysis, this allows retrieval of sequences originated
from the same mRNA molecule after PCRs and sequen-
cing. In a field like immune repertoire analysis, where target
molecules may differ only by a single base, making the dis-
tinction between technical errors and biological differences
is even more important; thus, using UMIs allows for a
straightforward error correction. For these reasons their
usage is increasing in immune repertoire profiling practice
and herewith recommended [53, 55].

Sequencing platform and sequencing depth
Some sequencing platforms are more error prone than
others, which means that a careful choice of the sequen-
cing depth is needed in order to effectively manage the
error rate, especially when not using molecular identifiers.
A high sequencing depth allows for analysis of a more
complete and complex repertoire [15], but deep sequen-
cing is not always the best choice in immune repertoire
analysis, depending on the purpose of the study. Disease-
oriented analyses often look for highly expressed and clon-
ally expanded TCRs. In this case, a superficial low-
coverage screening of the immune repertoire may even be
enough to catch the most common and expanded clono-
types in the sample. For this purpose, the Illumina MiSeq
platform is commonly used, while the Illumina HiSeq is
more often used for deep sequencing [14]. A general rec-
ommendation in order to achieve sufficient coverage for
all sequences is to aim for at least 30,000 on-target reads,
but ideally 100,000 reads per 10 ng of total starting RNA
material (which relates to approximately 10,000 lympho-
cytes) should be performed [48].
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Another issue that should be considered when select-
ing a sequencing platform is the diversity present in the
library. Multiplex PCR and target enrichment based li-
braries have a higher diversity compared to 5’RACE-
based libraries, which may all start with the same
adaptor sequence at the 5′ end. Higher diversity makes
sequencing with Illumina platforms easier. In case of
low diversity samples, as 5′ RACE, some adjustments
are necessary to improve the sequencing outcome. In-
cluding higher percentages of PhiX, which increases the
diversity within the sequencing run, or the addition of
random nucleotides in the used PCRs primers may over-
come this issue [48].

Service vs. in-house methods
Samples processed by a company (see Table 1) undergo
a standardized, robust and likely more reproducible
workflow compared to a non-specialized laboratory. In
addition, setting up a proper library preparation and bio-
informatics data analysis pipeline is not trivial and hav-
ing the analysis performed by experts in the field may
help in saving time and effort. However, companies’ ser-
vices are usually costlier than running the methods in-
house if the instruments and personnel are readily avail-
able. Also, when thinking of data analysis, it is important
to know prior to the experiment, what kind of data and
format will be provided by the respective company.
Some companies supply both raw sequencing data and
even analysed data (e.g. BGI), or only raw data if the
analysis is not covered by the service contract; others in-
stead provide only the final analysed output and no raw
data (e.g. Adaptive Biotechnologies). Ideally, both for-
mats should be provided, in case one needs or wants to
run additional analysis.
An additional option, when possible, may be to use a

commercial kit for library preparation and then se-
quence in-house. This warrants complete oversight and
control of sample processing and some companies pro-
vide a service of data analysis for self-performed sequen-
cing (e.g. iRepertoire). Per-sample costs may be more
expensive than for an in-house established protocol, but
likely also less time consuming as the kits are standard-
ized and contain thorough descriptions and advice for
troubleshooting. “Open-source” protocols that are used
in-house remain the more customizable option and en-
able for full control of every step of the process.

Data analysis
Over the past years different tools and strategies have
been developed for immune repertoire analysis, of which
some have been summarized in previous reviews [14, 15,
56–58]. Other methods, such as IMSEQ [59], TCRklass,
iMonitor [60], LymAnalyzer [61] and RTRC [62], have
however emerged since. A popular tool is MiXCR

(previously MiTCR), developed by Bolotin et al. [33],
which allows for a highly customizable analysis of both
TCR and immunoglobulin sequences. This is the tool we
chose for our analysis, as its parameters may be opti-
mized for different data types, sources and desired out-
puts. Software specific for analysis of data containing
UMIs are MIGEC [50] and pRESTO [63]. The tools
listed above are mainly used for primary analysis, as the
recovery of TCR sequences from raw data and succes-
sive clustering and annotation. LymAnalyzer additionally
contains a feature for SNP calling and sequence muta-
tion trees generation for IGs.
Further (secondary) data analysis of the immune rep-

ertoire classically involves the calculation of one or more
diversity indices [64, 65]. Among the most widely used
are the Shannon and the Simpson indices, as well as the
Inverse-Simpson and the Gini indices. These differ for
example in the consideration they give to factors as the
species richness and the evenness of the dataset.
Another typical step of the analysis is the calculation

of V and J gene usage in the different samples/datasets.
The usage of different V and J genes is indeed not uni-
form. In literature, there are many examples of biased
gene usage [10, 66]. A biased usage of specific genes
may also be the result of alterations in the repertoire
caused by diseases or other special conditions as organ
transplantations.
Different tools for secondary TCR repertoire analysis

and diversity estimation are available [67] and a list is
available in the repertoire sequencing (Rep-seq) category
of the Omic-tools community (https://omictools.com/rep-
seq-category) [68]. Recent developments include VDJtools
[69], which is capable of analysing outputs from the most
common repertoire processing tools described above, and
VDJviz [70], a webtool offering similar features as
VDJtools. Another tool that provides TCR diversity mea-
sures and gene usage statistics computations is the R
package “tcR”, which can be used to process the output
files format of software as ImmunoSEQ [71, 72], IMSEQ,
MiTCR, MiXCR, MIGEC and VDJtools [73]. Other ap-
proaches recently developed for estimation of TCR diver-
sity are from Greiff et al., which creates a diversity profile
using many diversity coefficients simultaneously [74],
from Laydon et al., which introduces a new solution called
DivE using rarefaction curves [75] and from Kaplinsky et
al., which makes use of a maximum-likelihood based ap-
proach without assumptions of the complete repertoire
clone richness [76].
When dealing with immune repertoire data, uniform-

ity between samples is important. To this end, especially
regarding diversity analyses, down- or re-sampling is a
commonly used strategy to generate more comparable
data. Similar data types may be easily encountered in the
fields of ecology and metagenomics studies. Hence, data
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analysis packages intended for these disciplines may also
be useful for immune repertoire analysis. An example
for an interdisciplinary approach already used for TCR
data is estimating the total diversity by using the “unseen
species model” [77, 78]. The function for this model is
provided for example by the “Vegan” R package, to-
gether with a series of common diversity measures and
estimators [79]. More precise information on low and
high complexity data analysis strategies are described in
detail elsewhere [80–83].

Outlook: Single cell methods
Here, we want to briefly cite the main available ap-
proaches for single cell analysis of TCRs. There are two
options commonly used for the analysis of the TCR rep-
ertoire from single cell suspensions: performing overall
transcriptome sequencing and extrapolation of TCR in-
formation; or using approaches to specifically target the
TCR transcript. To our knowledge, the most commonly
used commercial workflow for TCR information extrac-
tion from transcriptome data is offered through the C1
system machine of the Fluidigm Corporation [84, 85].
Different methods have been established for specific

targeting of the TCR transcript, of which some use
multiplex primer sets [86]. For example, Han and col-
leagues used a multiplex PCR approach for TCR α and β
chain analysis of FACS sorted cells [8]. Furthermore,
they included additional non-interfering multiplex
primers in their setup, enabling the parallel study of the
expression level of phenotypic traits related to T cells,
such as FOXP3, IL17A, TNF and others, thereby provid-
ing a more complete picture of the T cells of interest [8].
Another method, named “pairSEQ”, employs an experi-
mental design that divides a sample into different sub-
sets. It then uses combinatorics to evaluate unique TCR
αβ chains in every subset [37].
Very recently, Wafergen Biosystems launched a new

machine, the ICELL8 single-cell system. This machine
may be used with a dedicated kit for TCR sequencing,
based on the SMART technology of Takara Bio USA
[87]. 10XGenomics, Inc. recently also launched a new
dedicated kit for V(D)J analysis. A special note goes to
the publicly available instrument and method published
by McDaniel and colleagues, which can be used to
process millions of cells and to potentially analyse all
lymphocyte receptor chains (TCRαβ, TCRγδ, B cell
heavy and light chains). This method provides instruc-
tions for the construction of a dedicated device, which
makes use of an extended concept of the emulsion PCR
technology [88], capturing individual molecules using
primer-covered beads in droplets within an oil phase,
and performing PCR reactions for each bead [89] [90].
This technology, applied to TCR analysis, was previously
also published by Turchaninova et al. [91].

For a more detailed summary of single cell approaches
to study the immune system, reviews on the topic have
been published by Chattopadhyay et al. [92] and Proser-
pio et al. [93].

Results
We performed experiments using two of the methods
presented above as the most common approaches for
bulk immune repertoire sequencing, namely multiplex
PCR and 5’RACE-based PCR, using total RNA as start-
ing material. In addition, we compared our results with
results provided by the BGI immune repertoire sequen-
cing service, based on a multiplex PCR approach starting
from gDNA.
Here, we present some considerations based on our

own experiments and analyses, which may help to better
understand the methods described until now.

Replicate correlations
iRepertoire® library preparation and 5’RACE-based PCR
were performed in duplicates. Analysis of 5’RACE-based
PCR results was performed in parallel for UMI corrected
versus non-UMI corrected data. Previous studies have
demonstrated the difficulty of detecting the entire TCR
diversity of a sample, as it can vary consistently even be-
tween very close anatomical locations or between time
points. We thus decided to use replicates of the same
sample to better assess the stability of TCR diversity, es-
pecially when using superficial sequencing [11].
As mentioned before, quantity of starting material and

sequencing depth play a major role in defining the ex-
tent of the captured TCR diversity. A popular recom-
mendation is to use 100,000 reads to more than
efficiently cover the diversity in 10 ng of total RNA [48].
We opted for a superficial sequencing approach (1 mil-
lion reads for 500 ng total RNA), aiming to detect only
the most abundant TCR clonotypes and to determine
how many were identified in both duplicates, despite the
use of a sequencing depth which likely does not cover
the complete diversity present in the sample. For each
method (iRepertoire, 5’RACE and 5’RACE UMI cor-
rected) we compared the percentage of clonotypes
shared between duplicates (Table 2), assessing their cap-
acity of capturing TCR diversity.
When comparing the total detected repertoire, only

17–52% of observed clonotypes were shared between
duplicates (Table 2). However, when we compared only
the most abundant clonotypes of each duplicate (the
300, 100, 50 and 20 most abundant clones), we observed
a drastic increase in the percentage of shared clonotypes
(50–80%). The highest overlap was observed when com-
paring the most frequent 50 to 20 clonotypes. Thus, des-
pite superficial sequencing depth, we could successfully
detect the majority of the most abundant clonotypes in
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the samples. The increment in the percentage of shared
species was even more marked for the UMI corrected
data, demonstrating the usefulness of this strategy for
error correction. Shared clonotype percentages were
comparable between α and β chains.

Out of frame and stop codon containing sequences
During TCR data analysis it is common to encounter
non-functional CDR3 sequences, which are out of frame
or stop codon containing sequences. MiXCR labels these
sequences with particular symbols, making it possible to
exclude these sequences from the clonotype list.
We analysed the percentages of these non-functional

sequences in the data obtained from the iRepertoire® kit
or 5′ RACE based PCR and in the data provided by BGI,
which we re-processed with MiXCR (Table 3). Our re-
sults imply that the percentage of both out of frame and
stop codon containing sequences is higher in α chain re-
sults as compared to β chains, and that out of frame se-
quences are more commonly detected, as compared to
stop codons. iRepertoire results appeared to contain the
least non-functional CDR3 sequences. Samples analysed
by BGI contained a significantly higher percentage of
non-functional CDR3 sequences as compared to other
methods, which was to be expected, as gDNA was used
as starting material and the sequencing depth was sig-
nificantly higher. As anticipated, the percentages of non-
functional sequences decreased after correcting for
UMIs. Percentages were comparable between the two
patients we analysed.

Method comparison
Here, we compared results from three different methods
performed with the same patient samples, namely BGI
service (using gDNA), iRepertoire® kit and the in-house
established 5’RACE-based PCR (using RNA). In
addition, for 5’RACE data we compared both UMI-
corrected and not corrected data. After clonotype group-
ing and export, all datasets were filtered by retaining
only clonotypes detected with two or more counts. To

make data sets with different sequencing depths com-
parable, we decided to assess only the most abundant
clonotypes detected by each method. To set a threshold,
we determined which methodology provided the lowest
total number of detected TCR clonotypes. This applied
to UMI-corrected 5′ RACE based PCR (1300–2400 spe-
cies, depending on chain and patient), which was antici-
pated due to the strict filtering steps applied during
correction. We therefore only considered the most
abundant species detected by other methods above this
threshold and excluded any sequences below it. Our aim
was to determine if high frequency TCR clonotypes and
their relative abundancies could consistently be captured
using these different library preparation approaches.
When analysing the overlap of TCR clonotypes de-

tected by the different methods, we found that less than
10% were captured by all four methods (Fig. 3, Add-
itional file 1: Figure S1). These species were, however,
detected at high abundance in all methods. The majority
of clonotypes detected by one of the methods were
uniquely detected by that particular method (up to 75%),
at least among the highly abundant clones. As antici-
pated, the strongest overlap in species was observed be-
tween 5′ RACE-based PCR and UMI-corrected 5′ RACE-
based PCR. The percentage of sequences commonly cap-
tured by three or all methods increased when considering
only the highly abundant clonotypes (Additional file 1:
Figure S2). This is in concordance with the observations
made for replicate correlations (Table 2). However, clones
common to all methods were 19–25% when comparing
the top 100 clones and overlap not higher than 37%.
These results demonstrate not only the diversity of the
TCR repertoire, but also how clonotype abundance within
the same sample may vary when using different tech-
niques and correction methods. Indeed, clonotypes de-
tected as highly abundant by only one method, may still
be detected in others, but at low counts, resulting in in-
consistent information about relative species frequencies.
Using strict criteria of UMI correction lead to an involun-
tary loss of information, reflected by the fact that not UMI

Table 2 Percentages of CDR3 nucleotide sequences detected in both duplicates of the same method

Replicates shared
clonotypes
percentages

α chain β chain

iRepertoire 5’RACE 5’RACE + UMI iRepertoire 5’RACE 5’RACE + UMI

All clonotypes 36 44 20 35 52 25

Top 300 clonotypes 31 26 27 35 32 37

Top 100 clonotypes 37 31 36 46 51 51

Top 50 clonotypes 45 44 50 38 64 64

Top 20 clonotypes 60 65 70 50 80 75

The percentages are shown for comparisons made between all of the observed clonotypes and between the 300, 100, 50 and 20 most abundant sequences
detected by each method. Results include iRepertoire kit data, 5’RACE-based PCR data and data from the same PCR corrected using unique molecular identifiers.
Data are shown for both α and β chains
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corrected clonotypes detected by multiple methods were
lost after UMI correction. However, less stringent and
conservative methods for UMI correction are available
[50] and have recently been discussed by Smith, Heger
and Sudbery [94].

Exemplary analysis of gene usage and diversity
As described in the data analysis paragraph, we assessed
the V and J gene usage in our samples for α and β chain.
The analysis showed a method-dependent gene usage

bias for both the V and the J genes of α and β chain (Fig. 4
and additional file 1: Figure S3, respectively). Relative dif-
ferences in gene usage between the two patients seem to
be conserved among different methods, in particular for
the most used genes. For example, TRAV8–6 appears
to be more used in patient 1 compared to patient 2
and vice versa for TRAV1–2. However, and most im-
portantly, a method-dependent bias in the gene usage
was observed. A possible explanation for such differ-
ences across methods could be the use of different
primers during library preparation. We believe this is
a critical observation and an aspect that should be
considered prior to attempting to compare results de-
rived from different technologies.
In addition to gene usage, we also performed an exem-

plary analysis to study the diversity among different
samples and, in this particular case, methods. Results are
shown in Fig. 5.
As expected, samples from the same patient cluster to-

gether, as well as replicates from the same method. iRe-
pertoire and 5’RACE PCR results seem to be the most
distant from each other, while BGI results appears to
cluster more with 5’RACE results, compared to iReper-
toire (Fig. 5, Additional file 1: Figure S4).

Discussion
From our own experience, we learned that different
methods are effective in TCR species identification, but
to a different extent.
We prefer RNA over gDNA as starting material, be-

cause, even if more unstable, RNA contains the final TCR
transcript, it does not add noise to the results due to in-
complete VDJ-recombination products, and it allows for

Table 3 Percentages of detected CDR3 sequences that are out of frame or contain stop codons

Out of frame and stop codons
Clonotypes percentages

α chain β chain

IRepertoire 5’RACE 5’RACE + UMI BGI IRepertoire 5’RACE 5’RACE + UMI BGI

Patient 1 Out of frame CDR3% 6.3 9.5 8.4 36.5 1.2 3.1 2.7 16.3

Stop codons in CDR3% 1.2 2.0 1.5 8.3 0.3 0.8 0.8 4.5

Patient 2 Out of frame CDR3% 7.5 9.0 7.6 39.1 1.0 1.9 1.7 11.3

Stop codons in CDR3% 1.1 1.5 1.4 7.3 0.2 0.4 0.4 3.2

For each method (we took into account data from iRepertoire kit, 5’RACE PCR, 5’RACE PCR UMI-corrected and data from BGI) we present the percentages of se-
quences that were considered out of frame or that contain stop codons upon analysis with MiXCR. Data are shown for two patients and for both α and β chain

a

b

Fig. 3 Venn diagram showing the overlap between the most
abundant TCR sequences detected by each method. The threshold
was defined by the method which detected fewest TCR species
(UMI-corrected 5’RACE-based PCR). The diagrams show the number
and relative frequency of TCR sequences detected by only one up
to all four methods. Sequences that were found only by one
method may still be detected by other methods, but may not
appear in the most abundant species and are thus not represented
here. Data are shown for one patient for both (a) α and (b) β chains
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the use of the 5’RACE method. This is the approach we
suggest for library preparation, for two main reasons: (1) it
bypasses the amplification biases associated with multiplex
PCR and (2) it is suitable for use with UMIs.
In general, we consider low abundance TCR counts as

unstable, unless using particularly effective error correc-
tion strategies, such as UMIs. These error correction
strategies need to be handled with care in order to use
the right filtering criteria that fit the needs of the study.
If the purposes of the project include analyses of low
abundant species, we suggest a strict UMI filtering.
We did not observe a higher overlap with other

methods while comparing UMI vs non UMI corrected
data. Nevertheless, the concept behind UMI usage re-
mains valid and we believe it should become mandatory
in TCR analysis methodologies, in order to avoid PCR
distortions, which currently increase the complexity of
comparing samples and methods.
To avoid setting up the methods in-house, different

kits are commercially available, with or without sequen-
cing service (Table 1). When sequencing in-house, it is
important to select the appropriate sequencing depth in
relation to the quantity of starting material. More

superficial sequencing approaches are cheaper, but may
not be able to reflect the entire diversity and are not
suitable for rare TCR analysis. However, superficial se-
quencing may suffice when only abundant clonotypes
are of interest. Independent of which method is chosen,
one should keep in mind that a uniform quantity and
quality of starting material is essential for the positive
outcome of any experiment.
Interestingly, we were able to detect some TCR species

using low-coverage sequencing, which were not detected
within the BGI data. We believe that this may be due to
the difficulty of capturing the entire TCR diversity, even
with deep sequencing, considering the extremely high
variability of the target. Nevertheless, highly abundant
species showed a significant overlap between methods.
We think that deep sequencing is preferable for studies
which aim to extensively analyse the repertoire of co-
horts and populations, while low-coverage sequencing
might be preferential for studies directed at the identifi-
cation of already known or abundant clonotypes. Also,
due to the high repertoire diversity, performing bio-
logical replicates when possible can help reinforce the
analysis findings.

Fig. 4 Alpha chain Variable (V) gene usage among methods and replicates. The heat map shows the gene usage proportion inside each sample
for the V genes listed at the bottom on the figure. Each of the three parts of the heat map is representative of one of the methods. The samples
are described by the patients “P1/2”, the method “iRepertoire/BGI/5’RACE/5’RACE + UMI” and the replicate “1 or 2” or “0” in case of BGI which
does not include replicates. The figure was generated using the “ggplot2” R package
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Conclusions
Table 4 summarizes the advantages and disadvantages of
every method that we employed in our studies.
It is important to consciously select a method by keep-

ing in mind strengths and weaknesses of each approach,
as well as the goal of the scientific project which the
method will be applied to. It is also crucial to be careful
when comparing relative abundances in data obtained
with different methods, as they may be affected by
method specific biases as PCR amplification efficiency
discrepancies due to different primers.
Many of the mentioned methods may also be applic-

able to B-cell receptor analyses and as immune reper-
toire studies are increasing in number and complexity,

we believe that an educated choice of methodology is
one of the most important steps to achieve the desired
results in the growing field of “immunogenetics”.

Methods
Sample selection
For benchmarking we used two explanted liver tissue sam-
ples from patients with primary sclerosing cholangitis
(PSC), which were previously included in a study analys-
ing PSC-related TCR repertoires [95]. PSC is a chronic in-
flammatory disease of the liver affecting the intra- and
extra- hepatic bile ducts. PSC is characterized by high T
cell infiltration; thus, it provides a suitable system to study
T-cell receptor (TCR) repertoire signatures. To date, it is
completely unknown what causes PSC and which is the
triggering and/or driving antigen. Detecting disease-
associated TCR signatures would be an important step to-
wards the identification of the triggering/driving antigen.
Therefore, systematic TCR profiling experiments in the
organ of interest are of great importance to further under-
stand the immunogenetics of PSC and of other immune-
mediated diseases of unknown etiology.
gDNA and RNA were isolated simultaneously from

whole fresh-frozen disease-affected tissue using the All-
Prep DNA/RNA Mini Kit from Qiagen.

iRepertoire ®
As an exemplary method for RNA-based multiplex PCR
we selected the iRprofile kit from iRepertoire Inc. We
processed both samples in duplicates using 500 ng of
total RNA. This kit is highly customizable and offers op-
tions for both T and B cell receptor sequencing, different
receptor chains (αβ, γδ), gDNA or RNA, mouse or hu-
man, and sequencing platforms (Illumina, Roche 454).
iRprofile contains separate reactions mixes for α and β
chains, each uniquely barcoded. The protocol consists of
two consecutive PCRs using multiplex primers specific
for the V and J genes of the mentioned chains. The
resulting products are then ready for sequencing. The
sequencing data may then be sent to the company for

Table 4 Advantages and disadvantages of the tested techniques

+ -

BGI • Deep sequencing: more complete data
• Raw data and analysis provided by the company
• Company service: no hands-on work
• gDNA as starting material: better clonotype
quantification

• Expensive compared to in-house methods
• Multiplex PCR amplification bias
• Limited PCR and sequencing errors correction
• gDNA as starting material: not final TCR product

5’RACE • In-house method: control of all steps, relatively cheap
• No multiplex PCR bias
• Unique Molecular Identifiers: correction for PCR and
sequencing errors

• Superficial sequencing: less diversity detected
• Not high-throughput: small sample number processed per time

iRepertoire® • Kit: easy and fast hands-on (less than one day)
• De-multiplexing and basic data analysis made by
the company. FASTA files provided

• Multiplex PCR amplification bias
• Limited PCR and sequencing errors correction

Fig. 5 Dissimilarity dendrogram for alpha chain. The distance
between patients, methods, and replicates, calculated using the
Morisita index, is represented by the dendrograms. The samples are
described by the patients “P1/2”, the method “iRepertoire/BGI/
5’RACE/5’RACE + UMI” and the replicate “1 or 2”. The figure was
generated using the “ggplot2” and the “ggdendro” R packages
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demultiplexing. Basic data analysis is also performed and
demultiplexed data may be requested as FASTA files.

5’RACE
The 5’RACE method we chose is an in-house adaptation
of the protocol published by Mamedov et al. 2013 [48].
Briefly, the method entails 5’RACE-based cDNA synthe-
sis using a 5′-template switch adapter containing 12 ran-
dom nucleotides forming a UMI, followed by two
consecutive nested PCRs. During the second PCR, Illu-
mina adaptors are incorporated [96]. Consequently, cus-
tom sequencing primers were used in the following
MiSeq run. α and β chains were amplified in the same
reaction for cDNA synthesis and PCR 1, and they were
separated and uniquely barcoded during PCR 2. Samples
were processed in duplicates using 500 ng of total RNA.

BGI
5 μg of gDNA were sent to BGI for both α and β chain
immune repertoire analysis (2.5 μg/chain) based on
multiplex PCR. BGI performed basic data processing
which included data filtering, removal of adapter con-
tamination and low quality reads from raw reads and
elimination of sequencing background. Alignment to V/
D/J gene segments was carried out separately in IMGT
database, and data were realigned for best results. BGI
also carried out structural analysis which included CDR
sequence and base composition, V/D/J recombination
insertion and deletion. Data analysis included immune
repertoire profiling and differential analysis of diversity
between samples, differential expression analysis of
clones between samples and differential expression ana-
lysis of clones between groups. In addition to complete
data analysis all raw FASTQ files were provided by BGI.

Sequencing and data analysis
RNA sequencing was performed on an Illumina MiSeq
250PE. The sequencing platform used by BGI was
Hiseq2000 100PE.
For data analysis, we used MiXCR (version 2.1.1),

obtaining a ranked table of clonotypes including relative
species abundances, nucleotide and amino acid CDR3
sequences and respective VDJ alleles as output. Se-
quences containing the same UMI were grouped under
the same UMI signature. For each UMI, only the most
abundant sequence was selected, while the others were
considered PCR or sequencing errors (script used for
UMI filtering is available as Additional file 2). UMI fil-
tered results represent absolute mRNA transcript rela-
tive abundances in the original sample. BGI provided
data obtained using an older version of the MiXCR soft-
ware (MiTCR), which is why we reprocessed the raw
data with the same version of the software we used for

iRepertoire and 5’RACE data. Analysis parameters were
optimized based on starting material.
Gene usage analysis was performed using the “geneu-

sage” function of the “tcR” R package, while diversity
analysis was performed using the “vegdist” function of
the “Vegan” R package.

Additional files

Additional file 1: Supplementary material. Supplementary figures
mentioned in the main manuscript and their titles and legends. Figure S1.
Venn diagram showing the overlap between the most abundant TCR
sequences detected by each method. The threshold was defined by the
method which detected fewest TCR species (UMI-corrected 5’RACE-based
PCR). The diagrams show the number and relative frequency of TCR
sequences detected by only one up to all four methods. Sequences which
were found only by one method may still be detected by other methods,
but may not appear in the most abundant species and are thus not
represented here. Data are shown for two patients and for both α and β
chains. Figure S2. Venn diagram showing the overlap between the top 300
most abundant TCR sequences detected by each method. For every
technique (BGI, 5’RACE PCR, 5’RACE PCR UMI-corrected, iRepertoire kit) the
300 most abundant clonotypes were considered. The diagrams show how
many sequences were found to be present also in the most abundant 300
clonotypes of other methods. Sequences which are shown to be found only
by one method may still be detected by other methods, but don’t appear
in the 300 most abundant species of these. Data are shown for two patients
and for both α and β chains. Figure S3. Variable (V) and Joining (J) genes
usage among methods and replicates. The heat map shows the gene usage
proportion inside each sample for the Variable and Joining region alleles
listed at the bottom on the figure. Each of the three parts of the heat map
is representative of one of the methods. The samples are described by the
patients “P1/2”, the method “iRepertoire/BGI/5’RACE/5’RACE + UMI” and the
replicate “1 or 2” or “0” in case of BGI which doesn’t have replicates. The
figure was generated using the “ggplot2” R package. a) Beta chain V genes.
b) Alpha chain J genes. c) Beta chain J genes. Figure S4. Dissimilarity
dendrogram for beta chain. The distance between patients, methods, and
replicates, calculated using the Morisita index, is represented by the dendro-
grams. The samples are described by the patients “P1/2”, the method “iRe-
pertoire/BGI/5’RACE/5’RACE + UMI” and the replicate “1 or 2”. iRepertoire
replicate 2 for beta chain did not satisfy the data analysis quality criteria and
was therefore excluded. The figure was generated using the “ggplot2” and
the “ggdendro” R packages. (DOCX 3501 kb)

Additional file 2: UMI filtering script (python). The script used to filter
the unique molecular identifiers. (PY 4 kb)
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