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Abstract
Background: An essential part of using real-time RT-PCR is that expression results have to be
normalized before any conclusions can be drawn. This can be done by using one or multiple,
validated reference genes, depending on the desired accuracy of the results. In the pig however,
very little information is available on the expression stability of reference genes. The aim of this
study was therefore to develop a new set of reference genes which can be used for normalization
of mRNA expression data of genes expressed in porcine backfat and longissimus dorsi muscle, both
representing an economically important part of a pig's carcass. Because of its multiple functions in
fat metabolism and muscle fibre type composition, peroxisome proliferative activated receptor γ
coactivator 1α (PPARGC1A) is a very interesting candidate gene for meat quality, and was an ideal
gene to evaluate our developed set of reference genes for normalization of mRNA expression data
of both tissue types.

Results: The mRNA expression stability of 10 reference genes was determined. The expression
of RPL13A and SDHA appeared to be highly unstable. After normalization to the geometric mean of
the three most stably expressed reference genes (ACTB, TBP and TOP2B), the results not only
showed that the mRNA expression of PPARGC1A was significantly higher in each of the longissimus
dorsi muscle samples than in backfat (P < 0.05), but also that the expression was significantly higher
in the most cranial of the three muscle samples (P < 0.05).

Conclusion: This study provides a new set of reference genes (ACTB, TBP and TOP2B) suitable for
normalization of real-time RT-PCR data of backfat and longissimus dorsi muscle in the pig. The
obtained PPARGC1A expression results, after application of this set of reference genes, are a first
step in unravelling the PPARGC1A expression pattern in the pig and provide a basis for possible
selection towards improved meat quality while maintaining a lean carcass.
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Background
Because of consumers' demands, the emphasis of modern
day porcine breeding programmes and selection criteria is
gradually shifting towards a higher meat quality, instead
of the more classical focus of just selecting for a lean car-
cass and high growth rate [1]. Two strongly genetically
determined factors influencing meat quality are the
amount of intramuscular fat (IMF) and muscle fibre type
composition [2]. The first factor has a large impact on the
taste of the meat and its deposition is strongly influenced
by the surrounding muscle [3]. Peri- and post-mortem
biochemical processes in muscle and meat are strongly
influenced by muscle fibre type composition and in their
turn influence meat tenderness [4]. The fibre type compo-
sition depends on the location and use of a muscle. Mus-
cles used for posture are more oxidative, while more active
muscles contain more glycolytic fibres [2]. In general,
meat quality increases if more oxidative fibres and less gly-
colytic fibres are present, but the influence of fat distribu-
tion and fibre type composition on meat quality also
varies between different breeds [1,5,6].

Unfortunately the selection of leaner pigs was often
accompanied by a decrease in IMF and a lower percentage
of oxidative fibres, resulting in a decrease of meat quality
[7,8]. To understand the complex relationship between all
the traits affecting meat quality, it is important to trace the
responsible genes. One particularly interesting gene in
this regard is the peroxisome proliferative activated receptor γ
coactivator 1α (PPARGC1A), a coactivator that influences
the expression of many genes through a whole range of
nuclear hormone receptors and other transcription fac-
tors, like the peroxisome proliferative activated receptors
(PPAR α, β, γ), nuclear respiratory factors and the thyroid
hormone receptor [9,10]. PPARGC1A plays an important
role in adipogenesis and adipocyte differentiation [11],
mitochondrial biogenesis and respiration [9,12], and
hepatic gluconeogenesis [13]. This means that the gene is
involved in adaptive thermogenesis, fat metabolism and
energy homeostasis. PPARGC1A can be induced by cold
and exercise, it has been proven to function as a natural
protection against obesity in brown fat of mice by produc-
ing heat and it is especially expressed in tissues with a high
energy demand, like muscle and brown fat [9,10,14]. The
expression is higher in muscles that contain more oxida-
tive fibres and it has been shown that PPARGC1A is an
important factor in determining fibre type in that it
enhances the number of oxidative muscle fibres [15,16].
Also, other candidate genes for meat quality like glucose
transporter 4 (GLUT4) are regulated by PPARGC1A, mak-
ing it an even more interesting gene [17]. All these func-
tions and the fact that already a quantitative trait locus for
leaf fat weight in the pig has been located in the chromo-
somal region to which PPARGC1A was mapped [18],

illustrate that PPARGC1A is a very promising candidate
gene with regard to meat quality.

In humans, PPARGC1A has been thoroughly investigated
because of its presumed role in the obesity pandemic and
correlated diseases like type II diabetes mellitus and cardi-
ovascular complications, especially in search of possible
future therapies [19-21]. In the pig however, very little is
known about PPARGC1A although it has a great eco-
nomic potential and, because of the strong genetical
resemblance between pig and man, the information could
be useful in human research as well [22,23]. Jacobs et al.
[18] already described the porcine PPARGC1A coding
sequence and discovered several polymorphisms, of
which at least one was significantly associated with back-
fat.

To study mRNA expression levels, one needs a set of care-
fully selected and validated reference genes (also called
housekeeping genes) for normalization purposes. In the
pig however, virtually no information is available on ref-
erence genes. In this study, we therefore designed assays to
measure the mRNA expression levels of several candidate
reference genes, followed by determination of their
expression stability and suitability for normalization pur-
poses in the tissues of interest. The first aim of this study
was to develop a set of reference genes that can be used for
normalizing real-time RT-PCR mRNA expression data
from backfat and longissimus dorsi muscle of the pig. These
two tissues comprise an important part of the carcass and
have quite opposite demands regarding fat content, as
explained above. If the regulation of PPARGC1A expres-
sion proves to be different in these tissues, unravelling the
mechanism can possibly enable future selection towards
one feature without influencing the other. Therefore the
second aim of our study was to assess whether PPARGC1A
mRNA expression differs between backfat and several
longissimus dorsi muscle locations.

Results
Reference gene expression and selection
The cycle threshold value (Ct-value: the fractional PCR
cycle at which the fluorescent signal significantly rises
above the background signal) range of the reference genes
is shown in Figure 1 and demonstrates that their expres-
sion levels can vary considerably. Backfat samples some-
times showed a minimal SDHA mRNA expression (Ct >
36), but for most of these samples no SDHA could be
detected in our experimental setup. The expression pat-
tern of RPL13A varied between animals: either there was
expression in all 4 tissue samples of the same animal, or
no Ct-values could be measured, or expression could only
be detected in muscle samples but not in fat. For the other
8 reference genes, Ct-values were detected in all 4 tissue
types and their raw data were analyzed using the geNorm
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algorithm [24]. The stepwise exclusion of the reference
gene with the least stable expression showed that ACTB
and TOP2B were the most stably expressed reference genes
in the analyzed samples (Figure 2). Of note, the conven-
tionally used reference gene GAPDH proved to be quite
unstable in our tissue samples, further underscoring the
need for reference gene evaluation. GeNorm indicated
that normalization using a set of the 3 most stably
expressed reference genes (ACTB, TOP2B and TBP) would
provide reliable results for mRNA expression analysis in
backfat and longissimus dorsi muscle.

PPARGC1A expression
Figure 3 visualizes the PPARGC1A expression differences
between the rescaled, normalized data of the 20 pigs used
for determining the reference gene stability. The 95% con-
fidence intervals (represented by the error bars) clearly
indicate that the mRNA expression of PPARGC1A is signif-

icantly higher (P < 0.05) in the 3 muscle samples than in
backfat of the pig. It also shows that the expression in the
longissimus dorsi muscle sample taken near the 3rd or 4th rib
is significantly higher (P < 0.05) than in the other 2 mus-
cle samples. No significant PPARGC1A expression differ-
ence was found between these 2 other muscle samples.

The same analysis was performed on the data obtained
from the larger independent group of 30 pigs and showed
exactly the same significant differences in PPARGC1A
expression (See additional file 1:
AddFileRelativeExpression30pigs.doc).

Discussion
Real-time RT-PCR is a sensitive and accurate technique for
measuring gene expression [25], but to be able to compare
mRNA expression across samples, it is essential to correct
for variables such as differences in the amount of starting

Ct-value range of the reference genesFigure 1
Ct-value range of the reference genes. The thick, black line is the median. The coloured box represents 50% of the meas-
urements for a gene. #: depending on the animal, RPL13A was detected either in both muscle and fat, only in muscle, or was 
not detected at all. *: in most of the backfat samples no SDHA was detected.
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material in the reaction and enzyme efficiency. This nor-
malization can be performed by using internal reference
genes. Contrary to original expectations, it has been
proven that their expression level can vary extensively
with tissue type and (experimental) conditions, and that
their use needs to be validated for each type of tissue and
every experimental setup [26-28]. Furthermore Vandes-
ompele et al. [24] showed that more than one reference
gene should be used for accurate normalization of expres-
sion data.

In the pig however, very little is known about the expres-
sion of reference genes, certainly in combination with
real-time RT-PCR. Analysis of the expression stability of
the 10 chosen reference genes showed that RPL13A and

SDHA cannot be used for normalization of longissimus
dorsi and backfat data. The expression of RPL13A, a com-
ponent of the 60S ribosomal subunit, varied per animal.
As far as we know, this is the first time such an expression
pattern is described for this reference gene, and could
reflect a large difference in basic transcriptional activity
depending on the animal and/or tissue used. Because of
the importance of a correct protein synthesis mechanism,
it is likely that for the samples in which no RPL13A was
detected, its function was (partly) taken over by another
ribosomal protein [29-31], or that an alternative splice
product exists to which the used primer(s) could not
anneal [32,33]. Another possible explanation for this var-
iability is technical variation, because the assay could have
been at the limit of its sensitivity. SDHA, an enzyme
involved in energy production (Krebs cycle and respira-
tory chain) [34], could not be detected in backfat samples,
except for a very weak signal in a few pigs. This could indi-
cate SDHA is present in much lower concentrations in
backfat compared to longissimus dorsi muscle, which agrees
with one of the main functions of white adipose tissue,
storing energy. But from the data presented here no defin-
itive conclusions can be drawn regarding the cause of this
variability. 

As mentioned before, expression results are considerably
more reliable if they are normalized using the geometric
mean of multiple reference genes [24]. GeNorm analysis
indicated that addition of the 3rd reference gene to the
normalization factor had the largest impact on reducing
variability. Though variability further decreased by
including a 4th and 5th gene, the decrease is minimal and
does not outweigh the practical considerations accompa-
nying the inclusion of more genes. Therefore, the use of
the geometric mean of the 3 most stably expressed refer-
ence genes (ACTB, TOP2B and TBP; Figure 2) provides
reliable results for backfat and longissimus dorsi mRNA
expression comparison in the pig.

Although it has been investigated which tissues express
PPARGC1A and what the effects of sequence polymor-
phisms are [16,18,35], little is known in the pig about its
relative mRNA expression when comparing tissues to one
another. Because this knowledge is essential in research-
ing differences in PPARGC1A regulation in view of selec-
tion for improved meat quality, we compared its mRNA
expression in 2 economically important tissue types. Our
results not only clearly indicate that the PPARGC1A
mRNA expression is significantly higher in longissimus
dorsi muscle than in backfat (P < 0.05), but also that its
expression is significantly higher in the most cranial of the
3 muscle samples (P < 0.05; Figure 3). The PCR efficien-
cies of the standard curves indicated that the lower mRNA
expression of PPARGC1A in backfat was not due to inhi-
bition. Nevertheless, if there would be any inhibition

Relative, normalized and rescaled PPARGC1A mRNA expres-sion of 20 pigsFigure 3
Relative, normalized and rescaled PPARGC1A mRNA 
expression of 20 pigs. Muscle 3-4R are the longissimus dorsi 
samples taken near 3rd or 4th rib, muscle LR is taken near the 
last rib and muscle 4LV near the 4th lumbar vertebra. Error 
bars represent the 95% confidence interval.

Reference gene mRNA expression stability according to geNormFigure 2
Reference gene mRNA expression stability according to 
geNorm.
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present, this should be corrected for by normalization.
These results correspond with findings in humans where
PPARGC1A mRNA expression in vastus lateralis muscle
was clearly higher than in subcutaneous fat [36], and are
similar to studies in the pig on the mRNA expression of
PPARγ (one of the transcription factors coactivated by
PPARGC1A) which showed variation between visceral
and subcutaneous fat [37]. In a study on the effect of exer-
cise on PPARGC1A protein expression in rats, differences
were not only found between various skeletal muscles,
but also basal protein expression in a control group dif-
fered between the more oxidative and the more glycolytic
part of the gastrocnemius muscle [38]. Keeping this in
mind, a possible explanation for the higher mRNA expres-
sion in the most cranial longissimus dorsi sample could be
that because of its location, it has other energy demands
and fibre type composition compared to more caudal
parts of the muscle. Our findings could indicate a tissue
and location specific regulation of PPARGC1A expression
correlating with the functions of PPARGC1A in longissimus
dorsi muscle and backfat [20]. But on the other hand
mRNA expression differences do not necessarily translate
into protein expression differences [39].

Conclusion
The data from this study not only present a newly devel-
oped set of reference genes for normalization of mRNA
expression data from porcine backfat and longissimus dorsi
muscle, but also prove that significant differences exist in
PPARGC1A mRNA expression between and within (for
muscle) these economically important tissues, providing
a basis for possible selection towards improved meat
quality while maintaining a lean carcass.

Methods
Sample collection and cDNA synthesis
In a commercial pig slaughterhouse 4 samples were care-
fully collected from each of 50 cleaved pigs: a sample of
the longissimus dorsi muscle near the 3rd or 4th rib, a sample
of the longissimus dorsi muscle near the last rib, a longis-
simus dorsi sample near the 4th lumbar vertebra, and a sam-
ple of backfat. The samples (thickness 0.3 – 0.4 cm) were
immediately submerged in RNAlater (Sigma-Aldrich) for
RNA preservation, after which they were crushed to pow-
der with liquid nitrogen, subdivided per 80–100 mg and
stored at -80°C, until total RNA extraction with TRIR
(ABgene) according to the manufacturer's protocol. Dur-
ing the next step contaminating DNA was degraded by
treating each sample with RQ1 RNase-free DNase
(Promega) according to the instructions manual, fol-
lowed by a spin-column purification (Microcon YM-100,
Millipore). During optimization of the RNA extraction
protocol, RNA integrity was verified by loading RNA onto
a 0.8% agarose gel and evaluating the 28S and 18S ribos-
omal RNA bands. Backfat RNA showed slightly more deg-

radation compared to muscle RNA, but this was no
problem because of the small size of the amplicons used.
After verification of the absence of any DNA contamina-
tion by means of a minus reverse transcription (RT) con-
trol PCR (which included a positive porcine genomic
DNA control and a no-template control) using the
YWHAZ primers (Table 1), the purity and RNA concentra-
tion was measured with a BioPhotometer (Eppendorf).
The OD 260/280 ratio of the samples ranged between
1.75 – 2.15. Concentrations for muscle samples ranged
between 80–200 ng/μl (total yield 1.76–4.40 μg RNA)
and for fat samples between 40–100 ng/μl (total yield
0.88–2.20 μg RNA). In this way approximately 1 μg of
RNA from each sample could be converted to cDNA in the
subsequent 20 μl RT reaction with the iScript cDNA syn-
thesis kit (Bio-Rad), which contains both oligo dT and
random primers. The cDNA was diluted 10 times with
Tris-HCl (pH 8, 10 mM) before verification of the RT reac-
tion through a control PCR using 2.5 μl cDNA and the
same YWHAZ primers as mentioned above (Table 1).
Each PCR also included a negative control to check for
DNA contamination.

Primers
From literature 10 reference genes were selected (Table 2)
[24,40], belonging to different functional classes to mini-
mize the chance of coregulation. Primers for TOP2B were
used from Van Poucke et al. [40]. The NCBI [41] and
Ensembl [42] databases were used to search for available
porcine sequences of the other 9 reference genes in order
to design primers with Primer3 [43], taking into account
the possible secondary structures of the amplicon (Mfold)
[44] and the amplicon specificity of the primers (Blast)
[45]. Whenever possible, intron-spanning primers were
selected as an extra control to be able to distinguish
between cDNA and contaminating genomic DNA. Primer
conditions were optimized by determining the optimal
annealing temperature and primer concentration, and
amplicons were verified by sequencing with an ALFex-
press (Amersham Biosciences). The primer pair used for
measuring mRNA expression of PPARGC1A was selected
from Jacobs et al. [18]. Table 1 summarizes the informa-
tion on the primers, including their GenBank accession
numbers.

Real-time PCR assays
Real-time PCR was conducted on the iCycler iQ Real-Time
PCR Detection System (Bio-Rad), each reaction consisting
of 7.5 μl Platinum SYBR Green qPCR SuperMix UDG
(uracil-N-glycosylase; Invitrogen) spiked with 0.15 pmole
fluorescein calibration dye (Bio-Rad), 2.5 μl cDNA, the
optimized amount of primer and supplemented with
water (Molecular Biology Grade, Eppendorf) to a total
volume of 15 μl. The real-time PCR program started with
a 2 minute UDG incubation step at 50°C, followed by a 3
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minute denaturation at 95°C, during which the hot start
platinum Taq DNA polymerase was fully activated. This
was followed by 40 cycles of 15 seconds of denaturation
at 95°C and 30 seconds of annealing/elongation at the
optimal annealing temperature (Ta) for each specific
primer (Table 1), during which fluorescence was meas-
ured. Next a melting curve was constructed by increasing
the temperature from 70 to 95°C in sequential steps of
0.5°C for 10 seconds, at which fluorescence was meas-
ured. This allowed the verification of the presence of one
gene-specific peak and the absence of primer dimer peaks,
which also give a fluorescent signal and influence PCR
efficiency. During optimization all PCR products were
loaded onto a 2% agarose gel (Gentaur) for verification. A
10-fold dilution series of cDNA was included in each run
to determine PCR efficiency by constructing a relative
standard curve. PCR efficiencies were consistently > 92%

and were used to convert the Ct-values into raw data (not
yet normalized, relative quantities). All experiments con-
tained a negative control and samples were analyzed in 2
independent runs.

Reference gene selection
To determine the mRNA expression stability of the 10 ref-
erence genes, their expression in the 4 tissue samples (bio-
logical replicates) of 20 randomly selected animals was
measured using real-time PCR, as described above. This
means that for each reference gene 80 reactions were per-
formed in duplicate (technical replicates), in 2 separate
runs. To correct for technical inter-run variation between
replicated reactions of the same sample measured in dif-
ferent runs, the data from these 2 runs were calibrated by
calculating the average Ct-value over all the samples in
each run and subtracting the difference between these 2

Table 2: Full reference gene names

Full gene name

ACTB beta actin
B2M beta-2-microglobulin
GAPDH glyceraldehyde-3-phosphate dehydrogenase
HMBS hydroxymethylbilane synthase
HPRT1 hypoxanthine phosphoribosyltransferase 1
RPL13A ribosomal protein L13a
SDHA succinate dehydrogenase complex, subunit A
TBP TATA box binding protein
TOP2B topoisomerase II beta
YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide

Table 1: Information on the primers used for real-time PCR

Gene Primer sequence (5'→3') Amplicon length Ta GenBank accession number or reference

ACTB TCTGGCACCACACCTTCT
TGATCTGGGTCATCTTCTCAC

114 bp 60°C [GenBank:DQ178122]

B2M AAACGGAAAGCCAAATTACC
ATCCACAGCGTTAGGAGTGA

178 bp 60°C [GenBank:DQ178123]

GAPDH ACTCACTCTTCTACCTTTGATGCT
TGTTGCTGTAGCCAAATTCA

100 bp 57°C [GenBank:DQ178124]

HMBS CTGTTTACCAAGGAGCTGGAAC
TGAAGCCAGGAGGAAGCA

100 bp 59°C [GenBank:DQ178125]

HPRT1 CCGAGGATTTGGAAAAGGT
CTATTTCTGTTCAGTGCTTTGATGT

181 bp 60°C [GenBank:DQ178126]

RPL13A AGTTAAAGTACCTGGCCTTCCT
TGGCCTCTCTTGGTCTTG

136 bp 59°C [GenBank:DQ178127]

SDHA GAACCGAAGATGGCAAGA
CAGGAGATCCAAGGCAAA

191 bp 58°C [GenBank:DQ178128]

TBP GATGGACGTTCGGTTTAGG
AGCAGCACAGTACGAGCAA

124 bp 59°C [GenBank:DQ178129]

TOP2B AACTGGATGATGCTAATGATGCT
TGGAAAAACTCCGTATCTGTCTC

137 bp 60°C [40]

YWHAZ ATGCAACCAACACATCCTATC
GCATTATTAGCGTGCTGTCTT

178 bp 60°C [GenBank:DQ178130]

PPARGC1A CCTGCATGAGTGTGTGCTCT
CTCAGAGTCCTGGTTGCACA

107 bp 59°C [18]
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averages from each individual sample in the run with the
highest average Ct-value. After this calibration step, the
average Ct-value of each duplicate reaction was converted
to relative quantities and these were analyzed using the
geNorm algorithm, which is based on the principle that
the expression ratio of 2 ideal reference genes should be
identical in all samples [24]. Using this algorithm, the
most stably expressed reference genes and their optimal
number for normalization were determined.

The same procedure of real-time PCR, calibration and
conversion to relative quantities was repeated for the 4 tis-
sue samples of the remaining 30 animals, performed with
only the 3 most stably expressed reference genes as deter-
mined by geNorm.

PPARGC1A mRNA expression and data processing
Real-time PCR was conducted with the primers for
PPARGC1A on the 4 samples of all 50 animals, after
which the mRNA expression data were calibrated and con-
verted into raw data in the same manner as described
above for the reference genes. Then for each animal the
geometric mean of the raw expression data of the 3 most
stably expressed reference genes (i.e. normalization factor,
NF) was calculated and used for subsequent normaliza-
tion, dividing the raw PPARGC1A mRNA expression data
by the NF. These normalized expression levels of
PPARGC1A were then converted into logarithmic values,
the average per sample type and the 95% confidence inter-
val was calculated, these in their turn were converted into
linear rescaled values and eventually plotted in a graph
(Figure 3).
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