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Abstract
Background: Microarray experiments offer a potent solution to the problem of making and
comparing large numbers of gene expression measurements either in different cell types or in the
same cell type under different conditions. Inferences about the biological relevance of observed
changes in expression depend on the statistical significance of the changes. In lieu of many replicates
with which to determine accurate intensity means and variances, reliable estimates of statistical
significance remain problematic. Without such estimates, overly conservative choices for
significance must be enforced.

Results: A simple statistical method for estimating variances from microarray control data which
does not require multiple replicates is presented. Comparison of datasets from two commercial
entities using this difference-averaging method demonstrates that the standard deviation of the
signal scales at a level intermediate between the signal intensity and its square root. Application of
the method to a dataset related to the β-catenin pathway yields a larger number of biologically
reasonable genes whose expression is altered than the ratio method.

Conclusions: The difference-averaging method enables determination of variances as a function
of signal intensities by averaging over the entire dataset. The method also provides a platform-
independent view of important statistical properties of microarray data.

Background
Comparative gene expression using microarrays plays an
increasingly important role in analysis of biological con-
trol mechanisms, phenotyping, cell classification, and a
variety of other applications (see [1–3], for review).
There are now several commercial purveyors of microar-
ray equipment and reagents, as well as companies that
perform experiments on a contract basis. The output of
microarray experiments typically consists of intensity
measurements that are manipulated by scaling, back-

ground subtraction and other correction procedures, the
details of which are often proprietary. In the case of ex-
periments performed by contract, computer files are re-
turned to the customer which contain lists of sequences,
matched intensities and, in some instances, intensity ra-
tios compared to internal references.

Representation of intensity data as ratios has considera-
ble value for biologists. Seldom are absolute levels of
mRNA expression of interest. Rather, the relative chang-
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es in expression of individual genes between two samples
are more informative. But the use of ratios to character-
ize differences may have drawbacks. For example, esti-
mates of significance are more difficult to determine. In
addition, potential improvements in estimates of high
signals compared to low signals may not be adequately
represented by a ratio. Thus, a conservative evaluation of
confidence levels is called for, limiting useful informa-
tion that may be extracted from the intensity data.

Analytical approaches that rely on signal subtraction
may have certain advantages [4–6]. Variances for such
difference values are the sums of the variances for the in-
dividual measurements. Therefore, a simple, general
method to estimate variance at specific signal intensities
may permit more effective data analysis. In the absence
of replicates, the intensity distributions for individual
genes (and, therefore, the distribution mean (µ) and var-
iance (σ2)) are unknown. For an experiment that exam-
ines two hybridizations that involve the same RNA
sample, each gene is matched with two intensities, S1
and S2. The µ's for the distributions of each S are not
known and range widely, reflecting low or high gene ex-
pression. However, for properly handled data, µ for the
difference, S1 - S2 = ∆S, should be approximately zero for
all intensity levels. If the intensities are distributed nor-
mally, then the ∆S distribution can be used in principle
to determine σ2 for a given signal (σS

2) because σS
2 =

σ∆S2/2; that is, the variance of the difference of two iden-
tical distributions is twice the variance of the individual
function.

Here we present results from investigation of two com-
mercial microarray platforms, the Affymetrix system and
the Incyte Genomics system. We show that the control
data for both platforms, after proprietary manipulation
procedures, are well behaved using some statistical
measures. We further show that intensity differences can
be used to supply variance estimates of these differences
in a simple way, without the need for multiple replicate
datasets. These variances can be applied to non-control
data to estimate p values for specific changes in gene ex-
pression. The method described here is intended to sup-
plement more elaborate analytical procedures that
depend on larger numbers of independent observations.

Results
Reproducibility of intensity measurements
The two platforms were examined independently and all
comparisons were limited to datasets within one plat-
form. For the Affymetrix experiments, RNA samples
from D. melanogastor heads were used; for Incyte ex-
periments, human HEK293 cell line RNA (see Methods).
Intensity measurements from the mRNA samples were
analyzed using the data provided by the commercial

groups; no scaling or background subtraction was per-
formed other than the proprietary modifications to in-
tensities carried out prior to distribution of the files to
the customer.

To investigate the general properties of the data, the in-
tensities from two independent experiments using the
same control RNA (S1 and S2) were plotted (Figs. 1, 2).
In both cases, Affymetrix and Incyte, the data fit a
straight line with slope approximately equal to one and
intercept near zero. Thus, the data produced by both
platforms were judged to be well behaved, with no obvi-
ous skewing or bias in the expression measurements.

Distributions of intensity differences
To analyze data scatter in a different way, intensities of
the control RNAs within each data type were subtracted
from one another and the differences (S1-S2) were
graphed as a histogram (Figs. 3, 4). As expected from the
intensity plots in Figure 1, the differences in each dataset
were distributed as a bell-shaped curve with a mean near
zero. The histograms revealed some outliers, suggesting
possible divergence from the normal distribution. How-
ever, at least some of these outliers resulted from the
non-continuous distribution of signal intensities in the
datasets. Standard deviations of each histogram were
different, probably due to differences in the detection
methods, scaling, etc. used by the two groups. However,
each histogram had general attributes of a Gaussian dis-
tribution (e.g., area as a function of z value (where z = (x
- µ) /σ; not shown). Because a sum of Gaussians is also

Figure 1
Scatter plot of control sample 1 intensities (S1) vs. sample 2
intensities (S2) for the Incyte platform; y = 0.995x + 13.988.
RU, relative units.
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Gaussian, this finding was consistent with normally dis-
tributed individual intensity measurements.

Variance of intensity difference as a function of signal in-
tensity
In many cases, measurement accuracies (and the signfi-
cance of individual measurements) are related in a
straightforward way to the magnitude of the signal. Pho-
ton counts are such a case, and it is expected that higher
signal strengths (intensities) should have smaller per-
centage errors compared to weaker signals. If such meas-
urement errors could be estimated, confidence values
could be calculated for specific differences.

To obtain such estimates, an average intensity was calcu-
lated for each signal pair (= (S1+S2)/2). The averaged in-
tensities were sorted in descending rank order and were
averaged again, using a sliding window with 100 consec-
utive values incremented by one position at a time. The
matching differences (∆S) were also grouped in sets of
100 in the same way. However, instead of averaging, the
∆S sets were used to compute σ∆S2. Plots revealed the re-
lationship between the intensity and σS

2 (=σ∆S2/2; Figs.
5, 6). To these plots, various curves were fitted, including
polynomials and straight lines, and goodness-of-fit val-
ues (R2) calculated. Linear fits to the signal vs. σS

2 data
did not produce acceptable approximations to the Incyte
data (R2 = 0.789). However, quadratic and cubic polyno-
mials fit the Incyte data reasonably well (R2 > 0.9). A lin-
ear equation fit the Affymetrix data well (R2 = 0.943),
but visual inspection revealed a poor fit at lower intensi-
ties; thus a quadratic was used. Such polynomials pro-
vided a means to estimate σS

2, and hence, z values for

each difference. Notably, it was important to use data
spanning the entire relevant intensity range; extrapola-
tion from low intensity data to high-intensity data did
not give reliable results (not shown). Functions were also
fit to plots of average signal vs. σS. These plots suggested
that the scatter in the data increased at a rate intermedi-
ate between σ and σ2, with the Affymetrix data more
closely approximating proportionality to σ2 than the In-
cyte data (not shown).

The fine structure of the signal vs. variance plots was also
interesting. In both cases the plots were noisy, though
the Affymetrix data was smoother than the Incyte data.
Fine-structure patterns were not preserved among dif-
ferent experiments using one platform and, therefore,
probably do not reflect any fundamental trend for a given
platform (see Discussion). Quality of the Incyte data was
arguably poorer than the Affymetrix data, based on the
analysis of signal vs. σ2. However, other Incyte datasets
displayed smoother behavior, though the general form of
the intensity vs. σ2 data was similar (see Discussion).

Application of the method
The algorithm described above was applied to a microar-
ray experiment designed to compare gene expression in
human cells harboring either a cadherin-derived inhibi-
tor (Cad5CD) of the β-catenin pathway, or a dominant-
negative Tcf inhibitor (TcfDN) of the pathway [7,8]. The
biological interpretation of the results will be presented
elsewhere (Pierce and Kamb, unpublished). Each RNA
sample was compared to the control RNAs (made from
cells without expressed inhibitors) used in the analysis of
the Incyte platform described above. Plots of all single

Figure 2
Scatter plot of control intensities (as in Fig. 1) for the
Affymetrix platform; y = 1.003x + 54.79.
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Figure 3
Histogram of control signal differences (S1-S2) for the Incyte
platform. RU, relative units.
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dye intensity combinations were fit well by unit slope
lines through the origin (e.g., Fig. 7), and the ∆S histo-
gram was approximately Gaussian (not shown), suggest-
ing reasonable data quality. No dramatic differences in
gene expression were detected; the single largest ratio
was only 2.3-fold compared to the control. z values for
the Cad5CD – Control and TcfDN – Control were com-
pared, using σ computed from the cubic polynomial of
Fig. 3A. All measurements with low averages ((S1+S2)/2
< 400), corresponding to about 20% of the total dataset
were excluded.

Comparison of the two inhibitors using the difference-
averaging method described above yielded many more
significant differences than the Incyte group's suggested
ratio threshold (intensity ratio < -1.7 or > 1.7; Table 1).
For the application of the difference averaging method,
|z| > 3 (corresponding to p < 0.01 for normally distribut-
ed data) was chosen as cutoff. All the ratio outliers, with
a single exception that had low intensities in both exper-
iments, were also present in the set of sequences selected
based on z. The biological relevance of this set of selected
points was suggested by inclusion of a gene, cyclinD1,
known to be down-regulated by expression of TcfDN [9].
This gene (z < -3.4) displayed only a 1.3-fold suppression
compared to the control, but its high measured intensi-
ties pushed it over the limit for significance using the sig-
nal difference-averaging method. Furthermore, for all
but three of the sequences selected by |z| > 3, the sign of
the difference was the same in both datasets, as expected
based on the biological actions of the two inhibitors. Ra-
tios as low as +/- 1.2 were deemed significant for |z| > 3

(not shown). Such low ratios may have biological signifi-
cance, especially considering the steep dose/response of
many signaling systems and the fact that microarray ex-
periments provide population-averaged rather than sin-
gle-cell measurements of mRNA changes [10].

Discussion
In using intensity ratios for comparison of gene expres-
sion levels, a choice must be made about data presenta-
tion. In particular, it is necessary to confront a
mathematical problem inherent in expression ratios.
Consider a comparison of two RNA samples, A and B,
and associated intensity values for RNAs, an and bn. If,
after background subtraction, one RNA (bi) is undetect-
able while ai yields a measurable signal, then ai / bi ap-
proaches infinity. Moreover, for ai > bi, ai / bi > 1; but for
ai < bi, 0 < ai / bi < 1, resulting in an asymmetric repre-
sentation of comparative intensity values. These situa-
tions can be rectified in arbitrary ways; for instance, by
setting backgrounds to a non-zero value and using a log-
arithm transform of the ratio. Alternatively, introduction
of a discontinuity along with sign/ratio inversion (e.g.,
for ai > bi, use ai / bi; for ai < bi, use -bi / ai) solves the
problem. Such considerations do not arise if intensity
differences are used.

Several algorithms have been developed to analyze
microarray data both in the private and public sectors.

Figure 4
Histogram of control signal differences for the Affymetrix
platform. Affymetrix data were divided by 16.67 to allow
comparison with Incyte data (Fig. 3) on the same scale.
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Figure 5
Scatter plot of average intensities ((S1+S2)/2) vs. variance
(σ2) for the two control samples from the Incyte experi-
ment. Average intensities were first sorted by magnitude,
then averaged using a sliding window of 100 points; The same
window was used to calculate σ2 for the corresponding sets
of differences. A polynomial was fit to the data using least
squares of form: y = 2 × 10-7x3 - 1.7 × 10-3x2 + 21.503x -
6548.3; R2 = 0.914. RU, relative units.
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Some attention has been devoted to the problem of esti-
mating backgrounds, scaling data for dataset merging,
and determining statistical significance of intensity dif-
ferences or ratios. The most sophisticated published
treatments for determination of significance use Baye-
sian probability methods, maximum likelihood proce-
dures, or multiparameter fitting to analyze samples of
gene expression data [4–6]. As pointed out by others, the
lack of replicates of individual sequence intensities
blocks the most direct route to estimates of variance.
However, certain statistical treatments can provide esti-
mates for the means and variances of small numbers of
replicates (e.g., 4 in the case of Long et al. [6]) within
microarray datasets. However, collection of even a few
repeats can be technically impractical or prohibitively
expensive. Nevertheless, repetition is the most reliable
way to collect statistical information and the strategy de-
scribed here is intended to supplement, not replace, such
replication experiments.

The method of microarray data analysis presented here
is platform-independent and can be used to explore data
quality and to estimate variances. The calculated vari-
ances provide a statistical basis for interpreting signifi-
cance of intensity differences. The relationship between
intensity values (S) and σS

2 is discerned using an averag-
ing procedure that groups sets of points of related inten-
sities to estimate σ∆S2, and hence, σS

2. The use of all data
together to fit a function argues for a high degree of ro-
bustness in the procedure that should resist fluctuations
in the intensity measurements caused by noise. Further-
more, local averaging of intensity differences and calcu-
lation of σS

2 coupled with a global data fit provides the
most reliable estimates for σS

2 as a function of signal, as-
suming that variance is mainly a result of signal intensity
and is not otherwise sequence-specific. The general
smoothness of the plots supports this view. Within a giv-
en platform, the σ2 plots have similar general shapes that
can be fitted well by low order polynomials. Higher order

polynomials yield better R2 values, but are probably not
justified due to the noise in the data. A general function
is desired, not one that fits the idiosyncratic noise in a
specific pairwise comparison. Despite its presumed ro-
bustness, the difference-averaging method is expected to
perform better with higher quality data as input.

The estimators derived from this type of analysis can be
used to evaluate the significance of intensity differences
in non-control datasets, because they relate the magni-
tude of the intensity value, S, reported in the data file to
the standard deviation of an intensity distribution with µ
= S (Fig. 7). For example, a given pair of signals corre-
sponding to measurements for one sequence (e.g., a
gene) can be compared statistically by computing the
variance for each signal using the function derived from
the fitted data (e.g., a cubic polynomial in Fig. 5). The
variance of the difference (S1-S2) is simply σ12 + σ22.
The observation that distributions of intensity differenc-
es were approximately Gaussian in form suggests that z
values may provide reliable estimates for p values. Only
two replicates are required. In the case of two-dye exper-
imental platforms such as Incyte, inter-chip variances
can be estimated in the manner shown here. Intra-chip
variances can be estimated in a similar way, using two
dyes on a single chip. The inter-chip estimators for σ2

provide a conservative statistical measure of significance
if applied to inter-chip experiments and provide a justifi-
cation for determining significance of differences in
merged datasets. Due to its simplicity, the approach does
not require a sophisticated understanding of statistical
principles. Furthermore, the entire analytical procedure
can be performed inside a spreadsheet application such
as Microsoft Excel.

The two microarray platforms tested here use different
types of sequence on the chip. Affymetrix employs sets of
oligonucleotides to interrogate a specific RNA. Incyte
uses a single spotted DNA of substantially greater length.

Table 1: Genes whose expression differs significantly from controls

Method Cutoff Cad5CD Only TcfDN Only Both Total Total 
(Same Sign)

Up Down Up Down Up Down

Ratio 1.7 0 4 0 0 0 1 5 5
Diff. 3.0 5 12 9 26 2 15 69 66

Genes whose expression differs significantly from controls analyzed either by either by ratio or by the difference-averaging method (diff.). 
All 5 genes in the ratio set are present in the diff. set (see results). "Cutoff" is an intesity ratio for "Ratio" and a z value for "Diff." "Both" encom-
passes genes that are up- or down-regulated in both datasets (Cad5CD and TcfDN) for |z|>3.
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In contrast to Incyte data, the final intensity measure-
ment in the Affymetrix case is a function of individual in-
tensities derived from the oligonucleotides. The data
from Affymetrix chips were, at least superficially, well
behaved. The data from both platforms, especially In-
cyte's, appear to include noise other than the counting
statistics type. The scatter does not scale with σ2. This
behavior was not restricted to the dataset that was the
principal subject of the present study; all other Incyte da-
tasets analyzed, including those with a much smoother
appearance, displayed similar dependence (not shown).
Such noise may originate from variability in the spotting
or detection.

There are some peculiarities in both datasets regarding
the fine structure of the S vs. σS

2 plots (Figs. 5, 6). In par-
ticular, there are positions where sudden discontinuities
arise. The explanation for some of these jumps may in-
volve outliers; i.e., single poorly measured array points.
However, in many cases the jumps were inconsistent
with one or two aberrant measurements that might pro-
duce spikes in the averaged data. Rather, the jumps re-
sulted from a stable change in intensity vs. σS

2, causing
an abrupt transition to a new level, discernible as a sud-
den offset in the scatter plot data. It is noteworthy that
plots of S vs. σS

2 (as in Figs. 5, 6) do not display the same
fine structure features, though they all are of similar gen-
eral form (see Figs. 8, 9 for another example). For in-
stance, the large jump at intensity ~1750 visible in Fig.
3A was not as dramatic in other Incyte datasets. The ori-
gin of these transitions is not clear.

Conclusion
We have presented a simple analytical approach based
on differences in signal intensities and averaging for
analysis of microarray data which can be performed
without advanced statistics or specialized software. This
procedure provides insight into the properties of the data
under consideration, as well as estimates of variances as
a function of signal strength. Application of the method

Figure 6
Scatter plot of average intensities vs. variance for the two
control samples from the Affymetrix platform as in Figure 5;
fitted polynomial has form: y = 0.0046x2 + 3215.3x - 4 × 10-6;
R2 = 0.967.
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Figure 7
Scatter plot of Cad5CD signal vs. TcfDN signal. Fitted line
has form: y = 1.027x - 45.668 with R2 = 0.986. RU, relative
units.

Figure 8
Scatter plot of average intensities ((S1+S2)/2) vs. variance
(σ2) for a second experiment using the Incyte platform with
HEK293 mRNA from cells expressing a cadherin protein
fragment vs. a Tcf fragment (the same experiment as in Fig. 7
[7,8; Kamb, unpublished]. RU, relative units.
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gives statistical support for a more aggressive interpreta-
tion of microarray intensity data.

Materials and Methods
RNA samples
RNA for the Affymetrix experiment consisted of po-
ly(A)+ RNA isolated from heads from fruit flies that
overexpressed Fos and Jun. RNA for the Incyte platform
experiments was poly(A)+ RNA prepared from HEK293
human cells that expressed a mutant (S45Y) β-catenin
oncogene [11,12]. Other samples (e.g., head poly(A)+
RNA from fly heads that expressed dominant-negative
Fos and Jun molecules; and poly(A)+ RNA from
HEK293 cells that expressed either a cadherin or Tcf in-
hibitor of the β-catenin pathway were also collected and
examined [[7,8]; Kamb, unpublished].

Software
All analytical procedures and graphing was performed
using Microsoft Excel 2000; no other software packages
or custom code was used.

Data analysis
A basic summary of the Affymetrix chip data is provided
in Table 2; similar information was not available for In-
cyte data. Data files were imported into Excel and the
companies' internal controls were removed. Intensity
differences for pairs of control signals (S1-S2) were cal-
culated, as well as average signals for each pair ((S1+S2)/
2). These columns were sorted on average signal in de-
scending order and averaging window sizes were tested.
After settling on 100 data points as the window, an aver-
aged (S1+S2)/2 incremented by one point each time was
calculated along with σ and σ2 for the corresponding sets
of 100 points used in the signal averaging process. Poly-
nomials and lines were fit to plots of avg. (S1+S2)/2 vs.
σ∆S2/2.
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